
1501431 Intelligent Control Systems
Course Description:
Fundamental theories and mathematics for analyzing and designing a control system, PID
control, sensors and devices in control, Novel principle of artificial intelligence and its
applications in control systems, Industrial control system*, Precision control in automation*,
Practical AI in industrial control*.
(*modified in the framework of an Erasmus + project: Asean Factori 4.0 Across South East
Asian Nations: From Automation and Control Training to the Overall Roll-out of Industry 4.0
609854-EPP-1-2019-1-FR-EPPKA2-CBHE-JP)

Learning outcome:

1. Students can discuss the content of intelligent control system.
2. Students can analyze the behavior of intelligent control system.
3. Students understand the function of industrial control system.

Lecturer:
Assoc. Prof. Punnarumol Temdee, Ph.D.
Asst. Prof. Roungsan Chaisricharoen, Ph.D.
Asst. Prof. Santichai Wicha, Ph.D.
Lect. Chayapol Kamyod, Ph.D.

Credit: 3(2-2)
Lecture: 30 Hours (20 hours of modified content)
Lab: 30 Hours (20 hours of modified content)

Assessments:
Attendance 10%
HW/CW 20%
Midterm 25%
Final 25%
Project 20%

Lecture (seminar):

Content Hours
Introduction to control engineering 2
Analog control system 4
Digital control system 4
Control system for industrial* 4
Speed and precision of a system* 4
Intelligent algorithms for control system* 4
Application of industrial control* 4
Plant simulation and emulation* 4

(*modified in the framework of an Erasmus + project: Asean Factori 4.0 Across South East
Asian Nations: From Automation and Control Training to the Overall Roll-out of Industry 4.0
609854-EPP-1-2019-1-FR-EPPKA2-CBHE-JP)

Lab (internship):
Content Hours

Software for control engineering 2
Model of analog control system 4
Model of digital control system 4
Analog I/O of PLC* 2
Analog I/O of emulation card* 2
Emulation of PLC analog I/O* 2
Simulation of analog output* 2
Simulation of feedback control* 2
Emulation of analog output* 2
Emulation of feedback control* 2
PLC controllers* 2
Multiple PLC connection* 2
Synchronization of multiple PLC* 2

(*modified in the framework of an Erasmus + project: Asean Factori 4.0 Across South East
Asian Nations: From Automation and Control Training to the Overall Roll-out of Industry 4.0
609854-EPP-1-2019-1-FR-EPPKA2-CBHE-JP)

1501431 Intelligent Control
Systems

1st Semester, Academic Year: 2024

Assoc. Prof. Punnarumol Temdee, Ph.D.

Asst. Prof. Roungsan Chaisricharoen, Ph.D.

Asst. Prof. Santichai Wicha, Ph.D.

Lect. Chayapol Kamyod, Ph.D.

Program: Bachelor program in Computer Engineering
Credit: 3(2-2) Lecture: 30 Hours Lab: 30 Hours

This course has been modified in the framework of an Erasmus +
project: Asean Factori 4.0 Across South East Asian Nations: From
Automation and Control Training to the Overall Roll-out of Industry
4.0

609854-EPP-1-2019-1-FR-EPPKA2-CBHE-JP

Lecture 01: Control system for
industrial
2 sessions, 4 hrs

Exercise

• Study the process of freeze dry
• Specify a set of parameters to be monitored
• Design supervision and alams

Lecture 02: Speed and precision
of a system
2 sessions, 4 hrs

Tuning of a control system
The root locus method alone can help tune the system by showing the effect of a
parameter’s variation. However, this may not be enough for the situation where the
existed root locus is not passing the required area. In this case, an additional pole and
zero compensation can help bend the interested root locus to the shape that can deliver
the desired response. The compensator acts as a controller and is placed before the
system's process.

DC Motor
From the main problem, the dynamic equations in the Laplace domain and the open-loop
transfer function of the DC Motor are the following.

 (1)

 (2)

 (3)

The structure of the control system has the form shown in the figure below.

DC Motor model

For a 1-rad/sec step reference, the design criteria are the following.

 Settling time less than 2 seconds
 Overshoot less than 5%
 Steady-state error less than 1%

Now let's design a controller. Create a new m-file and type in the following commands.

J = 0.01;

b = 0.1;

K = 0.01;

R = 1;

L = 0.5;

s = tf('s');
P_motor = K/((J*s+b)*(L*s+R)+K^2);

Drawing the open-loop root locus
The main idea of root locus design is to predict the closed-loop response from the root
locus plot which depicts possible closed-loop pole locations and is drawn from the open-
loop transfer function. Then by adding zeros and/or poles via the controller, the root locus
can be modified in order to achieve a desired closed-loop response.

We will use for our design the Control System Designer graphical user interface. This tool
allows you to graphically tune the controller via the root locus plot. Let's first view the root
locus for the uncompenstated plant. This is accomplished by adding the
command controlSystemDesigner('rlocus', P_motor) to the end of your m-file and running
the file at the command line or by going to the APPS tab of the MATLAB toolstrip and
clicking on the app icon under Control System Analysis and Design.

One window titled Control System Designer will open initially having the form shown in
the figure below. In the window, you will be able to see both the root locus plot and the
closed-loop step response of the transfer function passed via
the controlSystemDesigner function. If the string 'rlocus' is omitted from the function call,
the default initial window includes the Bode plot, in addition to the root locus plot and
closed-loop step response plot. You can arrange the position of plots from the VIEW tab
of the Control System Designer window. Right-clicking on the root locus plot and
selecting Grid will make your window appear as follows.

https://ctms.engin.umich.edu/CTMS/index.php?aux=Extras_Mfile

Root locus of a DC motor

Finding the loop gain
Recall that our design requirements specify that the settling time be less than 2 seconds
and that the overshoot be less than 5%. The location of the system's closed-loop poles
provide information regarding the system's transient response. The Control System
Designer allows you to specify the region in the complex s-plane corresponding to specific
design requirements. The provided regions correspond to a canonical second-order
system, but in general are a good place to start from even for higher-order systems or
systems with zeros.

These desired regions can be added to the root locus plot by right-clicking on the plot and
choosing Design Requirements > New from the resulting menu. You can add many

design requirements including Settling time, Percent overshoot, Damping ratio, Natural
frequency, and generic Region constraint.

Adding our settling time and percent overshoot requirements to the root locus plot
produces the following figure.

settling time and percent overshoot requirements

The resulting desired region for the closed-loop poles is shown by the unshaded region
of the above figure. More specifically, the two rays centered at the origin represent the
overshoot requirement; the smaller the angle these rays make with the negative real-axis,
the less overshoot is allowed. The vertical line at s = -2 represents the settling time
requirement, where the farther to left the closed-loop poles are located the smaller the
settling time is. From examination of the above figure, there are values of the loop gain
that will place both closed-loop poles in the desired region. This can be seen from the fact
that the two branches of the root locus are symmetric and pass through the unshaded

region. Furthermore, since the closed-loop system has two poles with no zeros, placing
the closed-loop poles in the shown region will guarantee satisfaction of our transient
response requirements.

You can select a specific pair of closed-loop poles from the resulting figure in order to
determine the corresponding loop gain that places the poles at that location. For our
system, let's choose to place the closed-loop poles so that they are located on the vertical
branches of the root-locus between the real axis and the boundary of the overshoot
requirement. The pink boxes on the root locus indicate the location of the closed-loop
poles for the current loop gain. Clicking on the pink boxes and dragging them along the
root locus to the desired location automatically modifies the controller to place the closed-
loop poles at the indicated position. Let us drag a closed-loop pole to a location near -6 +
2i. The pole location will be indicated at the bottom of the window along with the
corresponding damping ratio and natural frequency. We can also check the
corresponding loop gain in the lower left corner by clicking on C in the Controllers and
Fixed Blocks tab. The loop gain, as we can see in the figure, is approximately 10.

We can check the closed-loop step response for the system with this new gain by moving
to the IOTransfer_r2y: step tab. If you have accidentally closed this tab, you can re-open
it from the Control System Designer window by clicking on the New Plot menu and
selecting New Step. In response, a new window titled New Step to plot will appear. From
the Select Responses to Plot menu, then choose IOTransfer_r2y and click the
button Plot. The response of the output y of the closed-loop system for a step
reference r will then appear in the Control System Designer window. You can also identify
some characteristics of the step response. Specifically, right-click on the figure and
under Characteristics choose Settling Time. Then repeat for Steady State. Your figure will
appear as shown below.

characteristics of the step response

From inspection of the above, one can see that there is no overshoot and the settling time
is less than one second, therefore, the overshoot and settling time requirements are
satisfied. However, we can also observe that the steady-state error is approximately 50%.
If we increase the loop gain to reduce the steady-state error, the overshoot will become
too large. You can see this for yourself by graphically moving the closed-loop poles
vertically upward along the root locus, this corresponds to increasing the loop gain. The
step response plot will change automatically to reflect the modified loop gain. We will
attempt to add a lag controller to reduce the steady-state error requirement while still
satisfying the transient requirements.

Adding a lag controller
In the above we saw that the overshoot and settling time criteria were met with the
proportional controller, but the steady-state error requirement was not. A lag

compensator is one type of controller known to be able to reduce steady-state error.
However, we must be careful in our design to not increase the settling time too much.
Let's first try adding a lag compensator of the form given below.

 (4)

We can use the Control System Designer to design our lag compensator. To make
the Control System Designer have a compensator parameterization corresponding to the
one shown above, click on the Preferences menu at the top of the Control System
Designer window. Then From the Options tab, select a Zero/pole/gain parameterization
as shown below.

Options of Control System Designer

To add the lag compensator, right click on the root locus plot and select Edit
Compensator. To add a pole zero pair to your compensator, in the Compensator

Editor window, right-click the Dynamics table and select Add Pole/Zero > lag. After that,
enter the Real Zero and Real Pole locations as shown in the following figure.

Editing a lag controller

Note that the maximum phase lag contributed by the compensator and the frequency
where it is located are updated to match the pole and zero locations chosen.

Finding the loop gain with a lag controller
Notice how the root locus has changed to reflect the addition of the pole and zero from
the lag compensator as shown in the figure below. We can again choose closed-loop pole
locations to attempt to achieve our desired transient requirements. Let's attempt to place
two of the closed-loop poles in our desired region near the boundary of the overshoot
requirement. For example, a loop gain of approximately 20 (set in the Compensator
Editor) will place the poles at the positions shown in the figure below.

Choosing poles locations

The corresponding closed-loop step response will then update automatically to match the
figure shown below.

Corresponding step response

As you can see, the response is not quite satisfactory even though two of the closed-loop
poles were placed in the desired region. The reason for this is because the closed-loop
system no longer has the form of a canonical second-order system. Specifically, there is
a third pole on the real axis indicated in the root locus plot above that is outside of the
desired region. The fact that this third pole is to the right of the two conjugate poles placed
above means that it will slow the system response down, that is why the settling time
requirement is no longer met. Additionally, the overshoot requirement is met easily even
though the two conjugate poles are near the edge of the allowed region. This is due again
to the third pole which is well damped and tends to dominate the response because it is
"slower" than the other poles. What this means is that we can further increase the loop
gain such that the conjugate poles move beyond the diagonal lines while still meeting the
overshoot requirement.

You can now return to the root locus plot and graphically move the conjugate poles farther
away from the real axis; this corresponds to increasing the loop gain. As you move the
closed-loop poles a sufficient distance, the limits of the plot should update automatically.
Alternatively, you can change the limits manually by right-clicking on the root locus and
selecting Properties to open the Property Editor. Then you can click on the Limits tab and
change the imaginary axis limits to [-15,15], for example, as shown below.

Editing root locus limit

Experiment with different gains (closed-loop pole locations) until you achieve the desired
response. Below is the root locus with a loop gain of 44 and the corresponding closed-
loop step response.

Tuned root locus

Tuned step response

Now the settling time is less than 2 seconds and the steady-state error and overshoot
requirements are still met. As you can see, the root locus design process requires some
trial and error. The Control System Designer is very helpful in this process. Using
the Control System Designer, it is very easy to tune your controller and immediately see
the effect on the root locus and various analysis plots, like the closed-loop step response.
If we had not been able to get a satisfactory response by tuning the loop gain, we could
have tried moving the pole and zero of the lag compensator or we could have tried a
different type of dynamic compensator (additional poles and/or zeros).

PID Controller Design
The proportional integral derivative controller (PID is the parallel configuration of a
proportional (P), an integral (I), and a derivative controller (D). The Simulink provides the
PID controller as a block shown in Figure below, where the configuration is shown in
Figure below.

The PID controller in Simulink

The gain of each parallel controller can be adjusted separately. These gains can be set
to zero for the controller-type that is not to use as Figure shows the undeployed derivative
controller as its gain is zero. The filter coefficient is specific to the derivative controller and
is active if and only if the derivative controller operates.

PID options

Position Control of a DC Motor
The based problem for the introduction of the PID tuning is the Simscape’s model of
closed-loop position control of a DC motor loaded by the inertia of 0.01 𝑘𝑘𝑘𝑘𝑚𝑚2 and a
rotational damper of 0.01 𝑁𝑁𝑚𝑚/ 𝑟𝑟𝑟𝑟𝑟𝑟

𝑠𝑠
 as shown in Figure , where a tuned PID controller is to

place between the differential amplifier and the buffer. The voltage source (𝑉𝑉𝑖𝑖) input
represents the desired angle of movement in radian. The potentiometer provides the unity
feedback by converting the angular rotation into the voltage in a 1:1 ratio.

Position control system of a DC motor

For the tuning process, the system of Figure is modelled into the Simulink schematic of
Figure , in which the PID controller is not providing any advantage to the response as it is
configured as 𝐾𝐾𝑃𝑃 = 1,𝐾𝐾𝐼𝐼 = 0, and 𝐾𝐾𝐷𝐷 = 0. The test signal is a step input representing the
rotation of 𝜋𝜋 radian, which is emulated by the 𝜋𝜋 volt input of Figure . The simulation results
are shown in Figure , where Simulink's and Simscape’s models provide the equivalent
responses. This setting is the scenario to be tuned through the upcoming techniques.

PID Controller

Equivalent Simulink’s schematic

Step response

Ziegler-Nichols Tuning Method
In 1942, the Ziegler-Nichols method was introduced, which became popular for its
systematic focus on fast response with reasonable oscillation. In addition, the disturbance
rejection of the tuned response is also admirable. The method is a kind of heuristic search
that is based on the multiple steps listed as follow:

• Set 𝐾𝐾𝐼𝐼 and 𝐾𝐾𝐷𝐷 to 0
• Start with a low level of 𝐾𝐾𝑃𝑃

• Gradually increase 𝐾𝐾𝑃𝑃 until the system is at the edge of stability
• Records the obtained 𝐾𝐾𝑃𝑃 as 𝐾𝐾𝑈𝑈, which is meant “the ultimate gain”
• Records the oscillated period based on 𝐾𝐾𝑈𝑈 as 𝑇𝑇𝑈𝑈
• Select the type of controllers (P, PI, or PID)
• Follow the guideline of 𝐾𝐾𝑃𝑃, 𝐾𝐾𝐼𝐼 and 𝐾𝐾𝐷𝐷 in Table based on the selected controller

Gains recommendation of Ziegler-Nichols method

Controller
Type

Controller
Function 𝐾𝐾𝑃𝑃 𝐾𝐾𝐼𝐼 𝐾𝐾𝐷𝐷

Proportional
(P) 𝐺𝐺𝑐𝑐(𝑠𝑠) = 𝐾𝐾𝑃𝑃 0.5𝐾𝐾𝑈𝑈

Proportional
Integral (PI) 𝐺𝐺𝑐𝑐(𝑠𝑠) = 𝐾𝐾𝑃𝑃 +

𝐾𝐾𝐼𝐼
𝑠𝑠

 0.45𝐾𝐾𝑈𝑈
0.54𝐾𝐾𝑈𝑈
𝑇𝑇𝑈𝑈

Proportional
Integral
Derivative
(PID)

𝐺𝐺𝑐𝑐(𝑠𝑠) = 𝐾𝐾𝑃𝑃 +
𝐾𝐾𝐼𝐼
𝑠𝑠

+𝐾𝐾𝐷𝐷𝑠𝑠
0.6𝐾𝐾𝑈𝑈

1.2𝐾𝐾𝑈𝑈
𝑇𝑇𝑈𝑈

0.6𝐾𝐾𝑈𝑈𝑇𝑇𝑈𝑈

8

The process can be initiated by observing the root locus of the system to indicate the
ultimate gain 𝐾𝐾𝑈𝑈. The overall root locus is displayed in Figure , which is too wide to
observe the situation around the origin.

Root locus of the position control of a DC motor

The zoomed version is shown in Figure which clearly indicates the instability issue as the
proportional gain 𝐾𝐾𝑃𝑃 increases. The ultimate gain 𝐾𝐾𝑈𝑈 is recorded at 68.37, where the locus
of the dominant poles is crossing the imaginary axis.

Zoomed root locus

The next is to record the period of oscillation. The step response based on 𝐾𝐾𝑃𝑃 = 68.37,
𝐾𝐾𝐼𝐼 = 0, and 𝐾𝐾𝐷𝐷 = 0 is displayed in Figure , in which the oscillation period 𝑇𝑇𝑈𝑈 is obviously
at 0.1 s.

Step response at 𝐾𝐾𝑃𝑃 = 68.37

In this case, the input voltage of 𝜋𝜋𝑉𝑉 represents the angle position of 𝜋𝜋 radian. Based on
the untuned response of Figure , the target of tuning is to obtain a step response of zero
steady-state error within 1 second settling time (𝑇𝑇𝑠𝑠) and the overshoot less than 3.5V or
approximately 11%. A good strategy in PID design is to try the least complicated one first
and then move on to the higher complicated version if the current one is not working.
Therefore, a proportional controller based on 𝐾𝐾𝑃𝑃 = 0.5 × 68.37 is tried first, and the
corresponding step response is shown in Figure , which is clearly not within the
requirements of 𝑇𝑇𝑠𝑠 ≤ 1𝑠𝑠 and overshoot less than 3.5V.

P controlled system of Ziegler-Nichols method

The more complicated PI controller is tried by setting 𝐾𝐾𝑃𝑃 = 0.45 × 68.37 and 𝐾𝐾𝐼𝐼 =
68.37
0.1

× 0.54. The simulated response is shown in Figure 11.21, which is turned out to be
worse than the response of the P-controlled system as the response of the PI-controlled
system is unstable. The PID controller is the last one to be tried as the gains are set as
𝐾𝐾𝑃𝑃 = 0.6 × 68.37, 𝐾𝐾𝐼𝐼 = 68.37

0.1
× 1.2, and 𝐾𝐾𝐷𝐷 = 68.37 × 0.1 × 0.6

8
. The simulated response is

shown in Figure 11.22, in which the settling time is within the requirement of 1s, but the
overshoot is clearly far from expected. This sample shows a scenario that the Ziegler-
Nichols method is not able to deliver a required response. However, this does not mean
that this tuning method is not good as it has famously adapted for many decades since its
introduction. The solution from this approach is a good starting set of gains that can be
refined iteratively to obtain the desired response. In addition, the Ziegler-Nichols method
is well known for its aggressive characteristics. Therefore, a fast but high overshoot is
quite common to the tuned response. By the way, please be reminded that there is no
silver bullet to track down every problem as every system has its own characteristics to
be treated in customization.

Desired output

Actual output

PI controlled system of Ziegler-Nichols method

PID controlled system of Ziegler-Nichols method

Desired output

Actual output

Desired output

Actual output

Manual PID Tuning Method
A PID controller can be manually tuned by adjusting 𝐾𝐾𝑃𝑃,𝐾𝐾𝐼𝐼 , and 𝐾𝐾𝐷𝐷 based on the guideline
shown in Table .

Effects of PID controller based on each parameter

Action Rise
Time Overshoot Settling

Time
Steady-

State error

Increasing KP Decrease Increase Minimal
effect Decrease

Increasing KI Decrease Increase Increase Significantly
Decrease

Increasing KD
Minimal
effect Decrease Decrease No effect

Please be noted that the listed guideline is applicable to many systems but not all.
Therefore, the designer is recommended to observe the effects and adapt rather than be
strict with the guideline. By the way, the guideline of Table will be tested on the position
control system of a DC motor in Figure that was tested on the Ziegler-Nichols method.
The initial set trial is not to apply the integral controller as the system is already of type-I,
in which the steady-state error is zero by default. The parameters to be set are then 𝐾𝐾𝑃𝑃
and 𝐾𝐾𝐷𝐷, which are tried and simulated as shown in Figure .

Step responses based on manual tunings

Desired output

KP=0.5, KI=0,KD=0.5

KP=0.75, KI=0,KD=0.25

KP=0.75, KI=0,KD=0.1

The first trial is based on the small value of 𝐾𝐾𝑃𝑃 and 𝐾𝐾𝐷𝐷 at 0.5. The obtained response is
too slow on the settling time and too low on the overshoot. This result clearly implies that
𝐾𝐾𝑃𝑃 is too low and 𝐾𝐾𝐷𝐷 is too high. The second trial is then based on 𝐾𝐾𝑃𝑃 = 0.75 and 𝐾𝐾𝐷𝐷 =
0.25. The response this time is faster but is still a little bit too slow as the overshoot is too
much oppressed. The last trial keeps the 𝐾𝐾𝑃𝑃 at 0.75 while the 𝐾𝐾𝐷𝐷 is reduced again to only
0.1. The obtained response looks good as it passes the settling time requirement of 1 s
with a slight overshoot of less than 3.5V. However, if the design of 𝐾𝐾𝑃𝑃 = 0.75 and 𝐾𝐾𝐷𝐷 =
0.1 is to be used practically, the control signal sent to the motor is observed, which must
not be over the motor's specification of 24V. The output of the PID controller is then
observed and displayed in Figure, which is maximumly at around 35V. Therefore, this
design is good at the model level but may not be suitable for practical implementation.

Controlling signal of 𝐾𝐾𝑃𝑃 = 0.75 and 𝐾𝐾𝐷𝐷 = 0.1

It is the act of the differentiator that initially raises the controlling voltage beyond the
limitation because it detects the slope of the error and converts it to the corresponding
control signal. As the response is rising fast, the error slope is increasing, which will make
the differentiator term increase. Therefore, the modification is to slightly decrease the 𝐾𝐾𝐷𝐷
from 0.1 to 0.07, lessening the peak of the controlling signal. The simulated comparison
responses are shown in Figure, where the decreased 𝐾𝐾𝐷𝐷 does increase the overshoot and
settling time but is still within the requirements.

Tuned responses with different 𝐾𝐾𝐷𝐷

The reason for this minor tuning is simulated and displayed in Figure, which presents the
controlling signal that is to be fed to the DC motor. Based on scarifying the little amount
of overshoot and settling time of the response, the peak controlling signal is now within
the limit.

Controlling signal based on 𝐾𝐾𝑃𝑃 = 0.75 and 𝐾𝐾𝐷𝐷 = 0.07

Desired output

KP=0.75, KI=0,KD=0.1

KP=0.75, KI=0,KD=0.07

A practical implementation of the finalized design of the PID controller is to be delivered
to complete the example. It is actually a PD controller based on 𝐾𝐾𝑃𝑃 = 0.75, 𝐾𝐾𝐷𝐷 = 0.07, and
𝑁𝑁 = 100. The first task is to set the controller's function, which is resulted in:

𝐺𝐺𝑐𝑐(𝑠𝑠) = (0.75 + 0.07 × 100)
𝑠𝑠 + 0.75 × 100

0.75 + 0.07 × 100
𝑠𝑠 + 100

Based on the calculations, the PD controller function is reduced to:

𝐺𝐺𝑐𝑐(𝑠𝑠) = 7.75
𝑠𝑠 + 9.6744
𝑠𝑠 + 100

There are choices of practical PID circuits. In this case, a simplified structure is deployed
as shown in Figure, which is enough to supply the control function of eq.

Simplified PD controller in application

PD Controller

Voc(s) Vic(s)

Based on the circuit’s parameters of the deployed controller, its circuit-based function is:

𝑉𝑉𝑜𝑜𝑐𝑐(𝑠𝑠)
𝑉𝑉𝑖𝑖𝑐𝑐(𝑠𝑠)

= −
𝑅𝑅𝑓𝑓
𝑅𝑅𝑖𝑖

𝑠𝑠 + 1
𝑅𝑅𝑓𝑓𝐶𝐶𝑓𝑓

𝑠𝑠 + 1
𝑅𝑅𝑖𝑖𝐶𝐶𝑖𝑖

The left tasks are the parameter matching of eq. 11.6 and 11.7. The first set of parameter
to be matched is 𝑅𝑅𝑖𝑖 and 𝐶𝐶𝑖𝑖 as:

1
𝑅𝑅𝑖𝑖𝐶𝐶𝑖𝑖

= 100

Then, 𝑅𝑅𝑖𝑖 is set to 100𝑘𝑘Ω, which will make 𝐶𝐶𝑖𝑖 = 100𝑛𝑛𝑛𝑛 for matching the condition of eq.
5.27. Based on 𝑅𝑅𝑖𝑖 = 100𝑘𝑘, 𝑅𝑅𝑓𝑓 is easily set to 775𝑘𝑘Ω according to the condition:

𝑅𝑅𝑓𝑓
𝑅𝑅𝑖𝑖

= 7.75

The final circuit parameter to be obtained is the 𝐶𝐶𝑓𝑓 which is based on the condition:

1
𝑅𝑅𝑓𝑓𝐶𝐶𝑓𝑓

= 9.6744

As 𝑅𝑅𝑓𝑓 is already set to 775𝑘𝑘Ω, 𝐶𝐶𝑓𝑓 is forced to be 133.37𝑛𝑛𝑛𝑛. The circuit parameters of the
PD controller are now completely determined and set to Simscape’s model of Figure . The
simulations are conducted to compare the performance of Simulink's mathematical model
and Simscape’s practical model. The compared responses are displayed in Figure ,
indicating the high level of compatibility as the two simulated responses are almost
identical. The control signal of Simscape’s model is also simulated and compared to the
control signal of Simulink's model as displayed in Figure , where they are shown to be
compatible and within the limit. By the way, the difference between the simplified PD
controller of Figure and the full-scale PD controller previously introduced in Figure is the
support of further tuning. The simplified model employs only one op-amp but cannot be
tuned easily as circuit parameters are tightly dependent on each other. The full-scale
version requires at least three op-amps but can be tuned semi-freely through a
potentiometer which is actually a variable resistor. Therefore, the choices of
implementation depend on what the designer emphasizes, as there always are pros and
cons to be traded off in engineering designs.

Responses based on compatible models

Control signals based on compatible models

It is clear that the tuning of a control system is to be conducted based on multiple concerns
as there is no single approach to fit all the problems. The design is often needed to be in
the loops of calibration, but the knowledge in guidelines and tools can significantly help
decrease the required time compared to the blind search.

Exercise

• Model a centrifugal pump system
• To deliver water of 200m length and 30m height
• Desired response is the flowrate
• Input to the process G(s) is the input voltage of a DC motor that drives the pump

• Design a controller to have zero steady-state error
• Minimizing the settling time

Lecture 03: Intelligent algorithms
for control system
2 sessions, 4 hrs

Lesson 3: Artificial Neural Network Controller
Artificial Neural Network (ANN) is a collection of elements called ‘Neuron’ in a systematic
way. A neuron is a simulation of a biological neuron in a human nervous system. An
artificial neural network is inspired by the human nervous system. A biological neuron is
a building block of a human nervous system. It can take multiple inputs at a time through
sensory inputs (like 5 senses: touch, see, smell, hear and taste) and other neurons,
process the inputs through its nucleus, and outputs the processed information, if it is
significant. See Figure 3.1a for the basic structure of a biological neuron. A single neuron
is not able to contribute much in overall decision-making processes, however, the ability
to decision making and thoughtfulness comes from the ability to work in parallel. There
are billions and trillions of neurons in a human nervous system, which are working in a
parallel manner; each in an independent way. Since they are too many, if some of them
are notworking, the network performance is not affected much. Hence, such a structure
works in a parallel but asynchronous way and offers a high level of fault tolerance with
distributed control. As per the famous saying, ‘I think therefore I am’ by Rene Descartes
(1637), intelligence results from the ability to think. If such a concept is incorporated within
a machine, would the machine be able to think or not is the basic inspiration behind the
artificial neural network. Figure 3.1b presents a simulation of a neuron, known as an
artificial neuron. As stated, the ability to think and hence intelligent decision making comes
from the collection of a large number of neurons working together towards a global
solution. For this, the neurons should be arranged in a proper structure or topology.
Hopfield network, perception, and multilayer perceptron with their variations, and self-
organizing maps are a few prominent neural network topologies to experiment with
artificial neural networks. The following section describes these artificial neural network
models in brief.

Figure 3.1 Biological and artificial neuron

Single Perceptron
Frank Rosenblatt (1958) proposed an artificial neuron inspired by the human nervous
system between the eyes and the brain. The main objective of the group of neurons
between the eye and brain is to perceive the image acquired. Hence, the name of the
suggested model of a neuron is ‘Perceptron’. As per the proposed model, the perceptron
welcomes multiple inputs, which are weighted in nature. Beside the weighted inputs, the
perceptron also has a processing function, called activation or transfer function. The
activation function processes the acquired inputs. There is a threshold function along with
a neuron which determines the further action of the neuron. If the processed value
generated from the weighted inputs to the neuron is significant enough, the neuron
communicates the output by sending it further—to other neurons, if any. This phenomenon
is called firing the output i.e. a perceptron’s basic function is to collect several weighted
inputs, process it, and fires the processed value further if the processed value is
significant. As a perceptron can choose to fire the output further or not; it is used to divide
the problem space into two classes. Hence, all linear- kind of ‘to be or not to be’ type of
problems can be effectively solved with a single perceptron. Figure 3.2 illustrates a single
perceptron solving a problem of selection of a course for a student to study further based
on inputs of parents. Figure 3.2 illustrates a single perceptron that solves a classical ‘to
be or not to be’ problem for the selection of a course.

Figure 3.2 Selection of a course

As shown in the figure the neuron takes two inputs from both the parents about a possible
course and processes it through an activation function available in the nucleus of the
neuron. Here, the activation function is ∑WiXi. Parents opinions are encoded as X1 (0.7)
and X2 (0.4). The relationship strengths of the candidate who wants to select the course
with the parents are given asW1 (0.3) andW2 (0.6) for both the parents respectively. As
per the sample values shown in the figure, the activation function calculates the value
0.45, which is less than the threshold value 0.6. Hence, the neuron decides not to fire,
and the course is not selected. Different weights and values of parents’ opinions can be
tried for a better understanding of the problem. This perceptron classifies the problem into
two categories to select or not to select the course; hence, called the linearly separable

problem. In the case of linearly separable problems, data are usually separated by a line
(hyper-plane in an advanced dimension).
A generic learning mechanism for a linearly separable problem, which is also known as
‘fixed increment perceptron learning’ can be given as shown in the following code.

 1. Let x(n) = input vector given as {+1, x1(n), x2(n), …,xm(n)}

w(n) = weight vector as {b, w1(n), w2(n), …, wm(n)}
b = bias
a(n) = actual response
r(n) = desired response
l = learning rate parameter

 2. Initialize w(0) = 0

 3. Activate perceptron by applying input vector x(n) and desired response r(n)

 4. Compute actual response of perceptron a(n) = f[w(n)x(n)]

 5. If r(n) and a(n) are different then w(n + 1) = w(n) + l[d(n)-a(n)]x(n), where r(n)=
±1

 6. Go to step 3 till all patterns properly classified

In the case of a popular tool called Support Vector Machine, the same strategy is
implemented. The support vector machine is a simple neural network model that
considers the given data and tries to classify them into two classes. Through the SVM,
classification is done in the presence of data.

Multilayer Perceptron
As stated, a single perceptron cannot solve non-linearly separable problems, which are
much complicated but fall into real-life problems category; hence, a multilayer perceptron
structure is proposed. The structure is illustrated in Figure 3.3.

Figure 3.3 Multilayer perceptron

In the multilayer perceptron, neurons are arranged in different layers. These neurons are
often called nodes. These layers are called the input layer, hidden layer, and output layer.
The input layer is responsible for collecting input from the environment. The output layer
produces the output. Hidden layers are invisible, and help in learning. At least one layer
of each category is required to form a multilayer neural network. Hidden layers are
generally many; in case of simple multilayer perceptron there may be one, two, or three
hidden layers. However, in the case of deep learning, there are multiple hidden layers.
Typically, the input and output layers are one each. Depending on applications more than
one input and more than one output layers can be planned. The following algorithm
illustrates popular heuristics to design a multilayer perceptron.

1. Verify the nature of the problem. Typically where many data are available but
there is a lack of generalized logic, one may go for multilayer perceptron ANN

2. Select critical parameters that play an important role in decision making. For
this, one needs to study the data available on hand. Alternatively, a few
successful cases where such decisions are made can be considered. Total
number of such important and critical parameters is, say ‘n’

3. Create an input layer (I) containing ‘n’ number of neurons. Also, assign its
activation function as the value of the input

4. Identify possible choices/output options for the problem. Say this number is ‘m’

5. Create one or two hidden layers (H1 and H2) containing an average of input
and output number of nodes; that is (‘n’ + ‘m’)/2. Assign activation function in
each neuron of every layer. Typical activation functions are softmax, sigmoid,
hyperbolic tangent, rectified linear activation unit, etc. The activation function
at the first hidden layer involves input values from the input layer nodes with
their weights. The activation function at the second hidden layer involves the
previous layer (hidden) nodes’ values with their weights

6. Create an output layer (O) containing ‘m’ number of nodes. Assign an output
activation function to each neuron in the output layer. The activation function
at the output layer involves values from the last hidden layer nodes with their
weights

7. Connect all neurons in such a way that ‘each neuron is connected in a forward
direction to every neuron of the adjacent layer’. This makes the network fully
connected, feed-forward (as all the connections are in a forward direction only)
multilayer neural network

8. Assign random weights to each connection

9. Train the network with collected valid data sets

Design NARMA-L2 Neural Controller in Simulink
The neurocontroller described in this section is referred to by two different names:
feedback linearization control and NARMA-L2 control. It is referred to as feedback
linearization when the plant model has a particular form (companion form). It is referred
to as NARMA-L2 control when the plant model can be approximated by the same form.
The central idea of this type of control is to transform nonlinear system dynamics into
linear dynamics by canceling the nonlinearities. This section begins by presenting the
companion form system model and showing how you can use a neural network to identify
this model. Then it describes how the identified neural network model can be used to
develop a controller. This is followed by an example of how to use the NARMA-L2 Control
block, which is contained in the Deep Learning Toolbox™ blockset.

Identification of the NARMA-L2 Model
As with model predictive control, the first step in using feedback linearization (or NARMA-
L2) control is to identify the system to be controlled. You train a neural network to
represent the forward dynamics of the system. The first step is to choose a model
structure to use. One standard model that is used to represent general discrete-time
nonlinear systems is the nonlinear autoregressive-moving average (NARMA) model:

 (3.1)

where u(k) is the system input, and y(k) is the system output. For the identification phase,
you could train a neural network to approximate the nonlinear function N. This is the
identification procedure used for the NN Predictive Controller.

If you want the system output to follow some reference trajectory
y(k + d) = yr(k + d), the next step is to develop a nonlinear controller of the form:

 (3.2)

The problem with using this controller is that if you want to train a neural network to create
the function G to minimize mean square error, you need to use dynamic backpropagation.
This can be quite slow. One solution, proposed by Narendra and Mukhopadhyay, is to
use approximate models to represent the system. The controller used in this section is
based on the NARMA-L2 approximate model:

 (3.3)

This model is in companion form, where the next controller input u(k) is not contained
inside the nonlinearity. The advantage of this form is that you can solve for the control
input that causes the system output to follow the reference y(k + d) = yr(k + d). The
resulting controller would have the form

 (3.4)

Using this equation directly can cause realization problems, because you must determine
the control input u(k) based on the output at the same time, y(k). So, instead, use the
model

 (3.5)

where d ≥ 2. The following figure shows the structure of a neural network representation.

Figure 3.4 Structure of a neural network representation

NARMA-L2 Controller
Using the NARMA-L2 model, you can obtain the controller

 (3.6)

which is realizable for d ≥ 2. The following figure is a block diagram of the NARMA-L2 controller.

Figure 3.5 Bock diagram of the NARMA-L2 controller

This controller can be implemented with the previously identified NARMA-L2 plant model,
as shown in the following figure.

Figure 3.6 NARMA-L2 plant model

Use the NARMA-L2 Controller Block
This section shows how the NARMA-L2 controller is trained. The first step is to copy the
NARMA-L2 Controller block from the Deep Learning Toolbox block library to the
Simulink® Editor. An example model is provided with the Deep Learning Toolbox software
to show the use of the NARMA-L2 controller. In this example, the objective is to control
the position of a magnet suspended above an electromagnet, where the magnet is
constrained so that it can only move in the vertical direction, as in the following figure.

Figure 3.7 A magnet suspended above an electromagnet

The equation of motion for this system is

 (3.7)

where y(t) is the distance of the magnet above the electromagnet, i(t) is the current flowing
in the electromagnet, M is the mass of the magnet, and g is the gravitational constant.
The parameter β is a viscous friction coefficient that is determined by the material in which
the magnet moves, and α is a field strength constant that is determined by the number of
turns of wire on the electromagnet and the strength of the magnet. To run this example:

1. Start MATLAB®.

2. Type narmamaglev in the MATLAB Command Window. This command opens
the Simulink Editor with the following model. The NARMA-L2 Control block is
already in the model.

Figure 3.8 narmamaglev sample

3. Double-click the NARMA-L2 Controller block. This opens the following window. This
window enables you to train the NARMA-L2 model.

Figure 3.9 Plant identification

4. Click Generate Training Data. The program generates training data by applying a series
of random step inputs to the Simulink plant model. The potential training data is then
displayed in a figure similar to the following.

Figure 3.10 Potential training data

5. Click Accept Data, and then click Train Network in the Plant Identification window. Plant
model training begins. The training proceeds according to the training algorithm (trainlm
in this case) you selected. After the training is complete, the response of the resulting
plant model is displayed, as in the following figure. (There are also separate plots for
validation and testing data, if they exist.) You can then continue training with the same
data set by selecting Train Network again, you can Erase Generated Data and generate
a new data set, or you can accept the current plant model and begin simulating the closed
loop system. For this example, begin the simulation, as shown in the following steps.

Figure 3.11 Resulting plant model

6. Return to the Simulink Editor and start the simulation by choosing the menu option
Simulation > Run. As the simulation runs, the plant output and the reference signal are
displayed, as in the following figure.

Figure 3.12 Simulation result

References
[1] Priti Srinivas Sajja - Illustrated Computational Intelligence: Examples and
Applications (2021, Springer)

[2] Neural Network Control Systems, [Online]. Available:
https://www.mathworks.com/help/deeplearning/neural-network-control-
systems.html?s_tid=CRUX_lftnav. [Accessed 2021].

Exercise

• Model a centrifugal pump system
• To deliver water of 200m length and 30m height
• Desired response is the flowrate
• Input to the process G(s) is the input voltage of a DC motor that drives the pump

• Applied an ANN-based controller to the system

Lecture 04: Application of
industrial control
2 sessions, 4 hrs

Simscape Multibody

Exercise

• Model a 2 joints mechanical arms based on Simscape Multibody
• Specify its functions
• Model its mechanics
• Define the control signal
• Define the feedback signal

Lecture 05: Plant simulation and
emulation
2 sessions, 4 hrs

Software and communications
• MathWorks Simulink

• Request, read, and write to GICS

• Simulink Desktop Real-Time
• Synchronize Simulink to real-time processing and communication

• Simscape
• Simulate physical systems (optional)

• Communication
• UDP

• PLC GICS Simulink
• GICS is the middleman to link PLC and Simulink
• Simulink emulates practical process
• PLC controls the process

Emulation concept
PLC GICS card

MathWorks Simulink
Direct connected

I/O
Analog voltage

UDP packet
binary

Controller Virtual
Process or
Plant

Communication loop

Simulink request
PLC’s outputs from

GICS

GICS sends PLC’s
outputs to
Simulink

Simulink processes
PLC’s outputs and

generates the
process responses

Simulink sends
process’s response

back to GICS

PLC examine the
process’s response

and synthesizes
the control signals

Scenario

PLC’s 2-channel output to GICS
• Read by Simulink
• From PLC: -27000 to 27000

• Sawtooth wave
• 16-bit signed integer

• GICS’s record: 0 – 35xx
• 12-bit unsigned integer

• Simulink’s read: 0 – 35xx
• 16-bit unsigned integer

Simulink’s 4-channel output to GICS
• Read by PLC
• From Simulink: 50 – 950

• Sinewave
• 16-bit unsigned integer

• GICS’s record: 50 - 950
• 10-bit unsigned integer

• PLC’s read: -25000 ± Δ to 25000
± Δ

• 16-bit signed integer

Configuration
PLC GICS card

MathWorks Simulink
Direct connected

I/O
Analog voltage

UDP packet
binary

-Read process output
from %IW0
-Send control signal via
%QW2

-Read control signal
from PLC directly to AI3
-Read process output
from Simulink via UDP
packet and keep in AO1

-Read control signal
from GICS’s AI3
-Send UDP packet to
update GICS’s AO1

GICS communication cycles

-Triggered at the rising edge
-Loop of sequences are:
 - Send request
 - Read from GICS
 - Write response to GICS

Request setting

Read setting

Write setting

Virtual Process

Conversion of 12-bit
unsigned integer

input to ±10V
Conversion of ±10V output to 10-bit unsigned integer but

sent as 16-bit unsigned integer

Monitor virtually
real input and

output voltages

Exercise
• Model an industrial bottle filling process

• Model the filler and other mechanics in Simulink
• All control signals (digital and analog) are from PLC
• Use GICS as the interface between PLC and the virtual process in Simulink
• Use HMI as a SCADA

1501431 Intelligent Control
Systems

1st Semester, Academic Year: 2024

Assoc. Prof. Punnarumol Temdee, Ph.D.

Asst. Prof. Roungsan Chaisricharoen, Ph.D.

Asst. Prof. Santichai Wicha, Ph.D.

Lect. Chayapol Kamyod, Ph.D.

Program: Bachelor program in Computer Engineering
Credit: 3(2-2) Lecture: 30 Hours Lab: 30 Hours

This course has been modified in the framework of an Erasmus +
project: Asean Factori 4.0 Across South East Asian Nations: From
Automation and Control Training to the Overall Roll-out of Industry
4.0

609854-EPP-1-2019-1-FR-EPPKA2-CBHE-JP

Lab 01: Analog I/O of PLC

Setting up the project

• Setting
• Create new project named “Lab01”
• Add PLC
• Config the network

• Config analog ports
• Analog I/O module is in the first slot

as shown in the figure on the right
• Inputs are the addresses labeled as

“%IW_ ”
• Outputs are the address labeled as

“%QW _”
• Use %IW0 and %QW0

Analog Module

Inputs
• 5 channel
• Datatype: integer
• Cycle time: 1ms
• -10 V to +10 V
• Resolution: 16-bit including sign

Outputs
• 2 channel
• Datatype: integer
• Cycle time: 1ms
• -10 V to +10 V
• Resolution: 16-bit including sign

Mapping input
• A tachometer can sense rotational speed from 0 to 4000 rpm

• Output: -10V (0 rpm) – 10V (4000 rpm)

• Compile PLC’s input into rpm
• -10 V input -27648 = 0 rpm
• 10 V input 27648 = 4000 rpm
• rpm = (input + 27648) x 4000/55296

• Lab
• Write a ladder diagram to map this input to rpm

Mapping output
• A linear mechanical actuator of distance 0 to 10cm

• Input: -10V (0 cm) – 10V (10 cm)

• Compile cm into PLC’s output
• -10 V output -27648 = 0 cm
• 10 V output 27648 = 10 cm
• output = -27648 + cm x (55296/10)

• Lab
• write a ladder diagram to generate this output

Exercise

• Design a mapping of
• Input ranged from -7V to 7V that linearly represent the temperature of -50 to

50 degree Celsius
• Output to a DC drive of a DC motor

• 0V 0 rpm
• 5V 5000 rpm

• Write the ladder diagrams of both cases

Lab 02: Analog I/O of emulation
card

Configuration

PLC GICS card

Output

Output

Input

Input

PLC I/O are programmed
in TIA Portal

GICS’s I/O are manipulated
in a special program called
“GICS Tester”.

Ethernet

Outputs

Outputs

Inputs

Inputs

PLC GICS card

Controlling/
monitoring

Programming/
monitoring

Wiring

Card’s IP
address

Card’s analog
outputs
or PLC’s analog
inputs

Card’s analog
inputs
or PLC’s analog
outputs

Card’s digital outputs
or PLC’s digital inputs

Card’s digital inputs
or PLC’s digital
outputs

Detail of Analog I/O

Outputs
• 8 channels
• Voltage range: -10V to 10V
• Resolution: 10-bit
• 0V at 512
• -10V at 0
• 10V at 1023

Inputs
• 8 channels
• Voltage range: -10V to 10V
• Resolution: 12-bit
• 0V at 2048
• -10V at 0
• 10V at 4095

I/O equations

• Vo required output voltage
• Od 10-bit decimal of output voltage
• Od = ⌊0 + (Vo + 10) ⌉(1024/20)

• Round to the nearest integer

• Vi sensed input voltage
• Id read 12-bit input decimal

• Vi = −10 + Id(20/4095)

Operating the card
- Open the GICS Tester
- Put the IP address “10.1.29.194”
- Check if the status is blue or not

If the status bar in the GICS Tester is not blue,
reset the card at this button.

Exercise

• Convert the following output
voltage to the card’s output

• -10V
• -8V
• -5V
• 0V
• 4V
• 7V
• 9V

• Interpret the following card’s
input to input voltage

• 10
• 1000
• 1700
• 2400
• 3900
• 4050
• 4095

Lab 03: Emulation of PLC analog
I/O

Configuration

PLC GICS card

Output

Output

Input

Input

PLC I/O are programmed
in TIA Portal

GICS’s I/O are manipulated
in a special program called
“GICS Tester”.

Ethernet

Outputs

Outputs

Inputs

Inputs

PLC GICS card

Controlling/
monitoring

Programming/
monitoring

Wiring

Physical connection

PLC Emulation
card

%IW0

%IW2

%IW4

%IW6

%QW0

%QW2

±10V
16-bit
reading

AO1

AO2

AO3

AO4

AI3

AI4

±10V
10-bit
sending

±10V
16-bit
sending

±10V
12-bit
reading

Configuration

• Create a project with PLC
of firmware version 2.5

Network configuration

Select Ethernet symbol

Add new subnet

Set IP and Profinet

Tag table

Input mapping

Output mapping

Memory declaration
for store each input

Ladder
diagram for
reading and
sending

4-channel reading
and store in memory

2-channel sending of
value -10000

Compile and load config/code to PLC
In practical, at this point, the code and config are to be loaded to the destination PLC.

TIA Portal run in a PC

Compiled codes and
configs

Download

If there is no error, the TIA Portal and the targeted PLC are synchronize. The PLC will run automatically but the
Portal can monitor and debug.

TIA Portal run in a PC
Synchronize

Compile and download to the PLC

Select Ethernet card to be targeted
interface

Search for the PLC in the subnet

Found the targeted PLC and select it

Load the config and code to the PLC

Check the loading option

Load the config and code to the PLC

Exercise

• Send the following value from
the card and observe the value
read by the PLC

• 0
• 100
• 300
• 500
• 800
• 1000

• Send the following value from
PLC and observe the value read
by the card

• -27648
• -15000
• -5000
• 0
• 10000
• 20000

Lab 04: Simulation of analog
output

RampFunction
• Act as an integrator

• Increase or decrease by a certain amount
(SlewRate) over a second)

• Naturally linear but can adjust SlewRate to act
as nonlinear function

• Can simulate output as a function of
driving force

• Output both positive and negative with
adjusted limitation (UpperLimit or
LowerLimit)

• Can reset to the specified value
(SubstituteOutput) which is default at “0”

Output will gradually increase or
decrease by the defined “SlewRate” to
the “Input”

There are four “SlewRate” to be set:
- PositiveRising
- PositiveFalling
-NegativeRising
-NegativeFalling

Output is bounded by UpperLimit and
LowerLimit

PLC and HMI tags
PLC

HMI

Config and link Slide input and bar output to
HMI tags

Add a RampFunction block

Link input and output to the RampFunction

Ex: Simulate the function of y(t) = 5t via the RampFunction
The slope of this function is 5, so SlewRate = 5

Set the upper and lower limits

-Set the Rising and Falling slew rate
-Only positive rising and falling are set
because the boundary is from 0 - 100

Simulate both PLC
and HMI

Set the slide bar on
the left to set the
desired output to
100

The output bar on
the right will move
up to 100 in 20
seconds

Exercise

• SlewRate can be non-constant via a specific function to generate
nonlinear output

• Ex. Output from a RampFunction can be input to another RampFunction

• Output can be manipulate by external function to further adjusting
• Try to simulate the following functions:

• y(t) = 5t + 100
• y(t) = t2

Lab 05: Simulation of feedback
control

A simple feedback control system

Equivalent to each
other: one in
feedback form,
another in
reduced transfer
function form

Signals

Implementing an Integrator by RampFunction

SlewRate = Input of an
integrator

RampFunction Output =
Integrator output

PLC Tag table
Input OutputSlew

For setting SlewRate in
RampFunction

For resetting RampFunction

For forcing RampFunction’s
output up or down

Ladder Diagram for feedback loop
Input OutputSlew

Slew < 0: Input is less than output, forcing
output down to match the input

Slew > 0: Input is greater than output,
forcing output up to match the input

Output of RampFunction will move up or
down according to the variable “force”
applied to its Input

To set the SlewRate of RampFunction,
a positive real value is required.

Make slew
positive value

Make slew to be
real value

Simulation

Set “Input”:P to 100

Output should
reach 100 in 4
seconds

Exercise

• Config and simulate a feedback control system of the following figure
in PLC.

Lab 06: Emulation of analog
output

Software and communications
• MathWorks Simulink

• Request, read, and write to GICS

• Simulink Desktop Real-Time
• Synchronize Simulink to real-time processing and communication

• Simscape
• Simulate physical systems (optional)

• Communication
• UDP

• PLC GICS Simulink
• GICS is the middleman to link PLC and Simulink
• Simulink emulates practical process
• PLC controls the process

Emulation concept
PLC GICS card

MathWorks Simulink
Direct connected

I/O
Analog voltage

UDP packet
binary

Controller Virtual
Process or
Plant

Communication loop

Simulink request
PLC’s outputs from

GICS

GICS sends PLC’s
outputs to
Simulink

Simulink processes
PLC’s outputs and

generates the
process responses

Simulink sends
process’s response

back to GICS

PLC examine the
process’s response

and synthesizes
the control signals

Scenario

PLC’s 2-channel output to GICS
• Read by Simulink
• From PLC: -27000 to 27000

• Sawtooth wave
• 16-bit signed integer

• GICS’s record: 0 – 35xx
• 12-bit unsigned integer

• Simulink’s read: 0 – 35xx
• 16-bit unsigned integer

Simulink’s 4-channel output to GICS
• Read by PLC
• From Simulink: 50 – 950

• Sinewave
• 16-bit unsigned integer

• GICS’s record: 50 - 950
• 10-bit unsigned integer

• PLC’s read: -25000 ± Δ to 25000
± Δ

• 16-bit signed integer

Simulink’s diagram of “GICS_rw.slx”

2-channel output from PLC

4-channel input
to PLC

PLC’s tag

Ladder diagram

Real-Time synchronizing
between PLC and
Simulink

PLC’s output

Simulink’s output

-Signal’s condition at
the end of Simulink’s
real-time session
-PLC is still working

Exercise
• Put a plant process between PLC’s

output and Simulink’s output
• Noted that the sampling time is 0.5

second
• Any 1st-order analog transfer

function: one input, one output
• -9V ≤ Input/Output ≤ 9V

• Put the appropriate number
conversion to I/O

• Implement as a subsystem as shown
in the below figure

• The process should be performed
well by 0.5s sampling time

Lab 07: Emulation of feedback
control

Emulation of a simple
feedback loop

• Controller is a PLC
• the process 𝐺𝐺(𝑠𝑠) = 1

𝑠𝑠2+5𝑠𝑠
 is

implemented in Simulink as a
virtual process

• Step input of 5V is set in PLC
• Control signal (input - output) is

provided by PLC
• Output is provided by Simulink

Configuration
PLC GICS card

MathWorks Simulink
Direct connected

I/O
Analog voltage

UDP packet
binary

-Read process output
from %IW0
-Send control signal via
%QW2

-Read control signal
from PLC directly to AI3
-Read process output
from Simulink via UDP
packet and keep in AO1

-Read control signal
from GICS’s AI3
-Send UDP packet to
update GICS’s AO1

Simulink Framework

AI3

AO1

Virtual Process

Conversion of 12-bit
unsigned integer

input to ±10V
Conversion of ±10V output to 10-bit unsigned integer but

sent as 16-bit unsigned integer

Monitor virtually
real input and

output voltages

PLC tags

Ladder diagram

5V input to the loop

Emulation through GICS with 0.5s sampling
period

Steady-state output read by PLC

Control
voltage sent
by PLC

Control voltage read by
Simulink

Process output voltage
sent by Simulink

The steady-state output is capped at around 3.35V because the control voltage sensed by Simulink is around
0. However, the PLC is meant to send 1.65V control signal.

Therefore, the offset voltage of the control voltage is around -1.65V.
Vcs Control voltage read by Simulink, Vcp Control voltage sent by PLC

Vcs = Vcp – 1.65

Calibration of the control signal from PLC

Added variable

Calibration by added 1.65V
to the control signal

Calibrated control voltage is
sent to PLC’s output

In steady-state, the control voltage in PLC and Simulink
are almost identical at zero.
However, the process output read by PLC is a little bit
higher than the process output sent by Simulink
Therefore, there is also an offset in GICS’s output to PLC.

Control and output voltages of the virtual
process

Control voltage read by
Simulink

Process output voltage
sent by Simulink

-The reference must be measured from the virtual process
not the PLC I/O.
-It is where the real work is virtually done.
-It is emulating a physical hardware and sensor.
-In Simulink’s simulation, we can assume that sensor is not
wrong. Therefore, calibration must be done in PLC coding.
-However, in real practical equipment, sensor should be test
for its validity.

Exercise

• Calibrate the PLC reading from
Simulink virtual process output

• Make the emulation response
closed to the theory shown in
the right figure.

• Config the HMI to show the
target response, the process
output, and the control signal.

Lab 08: PLC controllers

Second-order process
• Simulation of all-pole

second-order response
via Filter_PT2 block

• You can specify the
following filter
parameters:

• Proportional gain (K)
• Time constant (τ)
• Damping (ζ)

• ω = 1/τ
• τ = 1/ω

𝐺𝐺 𝑠𝑠 = 𝐾𝐾
𝜔𝜔𝑛𝑛2

𝑠𝑠2 + 2𝛿𝛿𝜔𝜔𝑛𝑛𝑠𝑠 + 𝜔𝜔𝑛𝑛2

Tag table

Proportional-Integral (PI) Controller

PI controller implementation

0 ≤ Ki ≤ 1 but %IW4 is an integer
So, 0.1 is added to the multiplication

Set “Input”:P to 100

Simulation

With Kp = 1, the final output is just half of the input as in theory.
In addition, the output is underdamped as the damping ratio is 0.5.

Increasing Kp will increase the output but it will never reach the goal no
matter how much of the Kp is applied.
In addition, increasing Kp will increase overshoot.

As the process is second-order, an integral controller will help reduce the
steady-state error.
Try increasing Ki, and observe the final value of the output. With “Ki”:P” is set to
5 (real Ki = 0.5 due to 0.1 factor in the ladder diagram), the final output will
reach the goal. The output is still underdamped due to 0.5 damping ratio.

Exercise

• Compare the simulation with theory
• Is there chances of instability while increasing Ki?

• Explain and prove with root-locus method

• Implement and simulate the following system:

𝐺𝐺 𝑠𝑠 =
4

𝑠𝑠2 + 3𝑠𝑠 + 4

Lab 09: Multiple PLC connection

S7 communication services

Revisit the project file of the previous lab (Lab
8)
• Add a new PLC to the project

Config the IP and
subnet

Both PLCs are belong to the subnet but there is no connection.

A new connection must be added.

S7 connection between two PLCs are
established.

Communication via PUT

The access must be permitted.

Create tag in PLC2 to get info from PLC1.

Config the connection parameter of the PUT block by matching the
targeted partner PLC

Select “Output” as sending tag
Put bit address of the target partner PLC memory

Simulating the PLC2

The tag “P1 output” will not change as it will
be modified by P1.

As P1 is also running, it will force the value of its output to P2.

Exercise

• Remove the PUT block from PLC1
• Use GET block at PLC2 to obtain PLC1’s output instead.

Lab 10: Synchronization of
multiple PLC

Revisit the PLCs in Lab-9

• PLC2 will reset the output of the plant reported by PLC1 if it is
exceeding a certain level set in PLC2

• Synchronization
• PLC1 put the value of its output to PLC2
• PLC2 put the value of its resetting command to PLC1

PLC1 tags

Permit access with
PUT/GET on PLC1

PLC2 tag

Ladder diagram of
PLC2 issuing
“reset” logic

Ladder diagram of
PLC1 reading the
logic “reset” from
M2.0 of PLC2

PLC1 and PLC2
are
synchronizing
as PLC1 sends
its output to
PLC2, and read
the “reset”
logic from
PLC2.

Exercise

• Add a PLC to do an additional filling as same as PLC1 do
• Make PLC2 issuing a reset signal to the PLC as same as with PLC1

	Intelligent Control Systems-seminar.pdf
	1501431 Intelligent Control Systems
	Lecture 01: Control system for industrial
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Exercise
	Lecture 02: Speed and precision of a system
	Exercise
	Lecture 03: Intelligent algorithms for control system
	Exercise
	Lecture 04: Application of industrial control
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Simscape Multibody
	Slide Number 37
	Slide Number 38
	Exercise
	Lecture 05: Plant simulation and emulation
	Software and communications
	Emulation concept
	Communication loop
	Scenario
	Configuration
	GICS communication cycles
	Request setting
	Read setting
	Write setting
	Virtual Process
	Exercise
	Speed and precision.pdf
	Tuning of a control system
	DC Motor
	Drawing the open-loop root locus
	Finding the loop gain
	Adding a lag controller
	Finding the loop gain with a lag controller
	PID Controller Design
	Position Control of a DC Motor
	Ziegler-Nichols Tuning Method
	Manual PID Tuning Method

	Intelligent algo.pdf
	Lesson 3: Artificial Neural Network Controller
	Single Perceptron
	Multilayer Perceptron
	Design NARMA-L2 Neural Controller in Simulink
	Identification of the NARMA-L2 Model
	NARMA-L2 Controller
	Use the NARMA-L2 Controller Block

	References

	Intelligent Control Systems-internship.pdf
	1501431 Intelligent Control Systems
	Lab 01: Analog I/O of PLC
	Setting up the project
	Analog Module
	Slide Number 5
	Slide Number 6
	Mapping input
	Slide Number 8
	Slide Number 9
	Mapping output
	Exercise
	Lab 02: Analog I/O of emulation card
	Slide Number 13
	Configuration
	Slide Number 15
	Slide Number 16
	Detail of Analog I/O
	I/O equations
	Operating the card
	Slide Number 20
	Exercise
	Lab 03: Emulation of PLC analog I/O
	Configuration
	Slide Number 24
	Physical connection
	Configuration
	Network configuration
	Tag table
	Ladder diagram for reading and sending
	Compile and load config/code to PLC
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Exercise
	Lab 04: Simulation of analog output
	RampFunction
	Slide Number 38
	Slide Number 39
	PLC and HMI tags
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Exercise
	Lab 05: Simulation of feedback control
	A simple feedback control system
	Signals
	Implementing an Integrator by RampFunction
	PLC Tag table
	Ladder Diagram for feedback loop
	Slide Number 54
	Slide Number 55
	Simulation
	Exercise
	Lab 06: Emulation of analog output
	Software and communications
	Emulation concept
	Communication loop
	Scenario
	Simulink’s diagram of “GICS_rw.slx”
	PLC’s tag
	Ladder diagram
	Real-Time synchronizing between PLC and Simulink
	Slide Number 67
	Exercise
	Lab 07: Emulation of feedback control
	Emulation of a simple feedback loop
	Configuration
	Simulink Framework
	Virtual Process
	PLC tags
	Ladder diagram
	Emulation through GICS with 0.5s sampling period
	Calibration of the control signal from PLC
	Control and output voltages of the virtual process
	Exercise
	Lab 08: PLC controllers
	Second-order process
	Tag table
	Proportional-Integral (PI) Controller
	PI controller implementation
	Slide Number 85
	Slide Number 86
	Simulation
	Slide Number 88
	Slide Number 89
	Slide Number 90
	Exercise
	Lab 09: Multiple PLC connection
	S7 communication services
	Slide Number 94
	Slide Number 95
	Revisit the project file of the previous lab (Lab 8)
	Config the IP and subnet
	Slide Number 98
	A new connection must be added.
	Slide Number 100
	S7 connection between two PLCs are established.
	Communication via PUT
	Slide Number 103
	Slide Number 104
	Slide Number 105
	Slide Number 106
	Exercise
	Lab 10: Synchronization of multiple PLC
	Revisit the PLCs in Lab-9
	PLC1 tags
	Permit access with PUT/GET on PLC1
	Slide Number 112
	Slide Number 113
	Slide Number 114
	Slide Number 115
	Exercise

