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Lecture 01: Control system for 
industrial
2 sessions, 4 hrs







































Exercise

• Study the process of freeze dry
• Specify a set of parameters to be monitored
• Design supervision and alams



Lecture 02: Speed and precision 
of a system
2 sessions, 4 hrs



Tuning of a control system 
The root locus method alone can help tune the system by showing the effect of a 
parameter’s variation. However, this may not be enough for the situation where the 
existed root locus is not passing the required area. In this case, an additional pole and 
zero compensation can help bend the interested root locus to the shape that can deliver 
the desired response. The compensator acts as a controller and is placed before the 
system's process.  

 

DC Motor 
From the main problem, the dynamic equations in the Laplace domain and the open-loop 
transfer function of the DC Motor are the following. 

 

 (1) 
 

 (2) 
 

 (3) 
 
The structure of the control system has the form shown in the figure below. 

 

 
DC Motor model 

 

For a 1-rad/sec step reference, the design criteria are the following. 



 Settling time less than 2 seconds 
 Overshoot less than 5% 
 Steady-state error less than 1% 

 
Now let's design a controller. Create a new m-file and type in the following commands. 
 

J = 0.01; 

b = 0.1; 

K = 0.01; 

R = 1; 

L = 0.5; 

s = tf('s'); 
P_motor = K/((J*s+b)*(L*s+R)+K^2); 

 

Drawing the open-loop root locus 
The main idea of root locus design is to predict the closed-loop response from the root 
locus plot which depicts possible closed-loop pole locations and is drawn from the open-
loop transfer function. Then by adding zeros and/or poles via the controller, the root locus 
can be modified in order to achieve a desired closed-loop response. 

We will use for our design the Control System Designer graphical user interface. This tool 
allows you to graphically tune the controller via the root locus plot. Let's first view the root 
locus for the uncompenstated plant. This is accomplished by adding the 
command controlSystemDesigner('rlocus', P_motor) to the end of your m-file and running 
the file at the command line or by going to the APPS tab of the MATLAB toolstrip and 
clicking on the app icon under Control System Analysis and Design. 
 
One window titled Control System Designer will open initially having the form shown in 
the figure below. In the window, you will be able to see both the root locus plot and the 
closed-loop step response of the transfer function passed via 
the controlSystemDesigner function. If the string 'rlocus' is omitted from the function call, 
the default initial window includes the Bode plot, in addition to the root locus plot and 
closed-loop step response plot. You can arrange the position of plots from the VIEW tab 
of the Control System Designer window. Right-clicking on the root locus plot and 
selecting Grid will make your window appear as follows. 
 

https://ctms.engin.umich.edu/CTMS/index.php?aux=Extras_Mfile


 
Root locus of a DC motor 

 

Finding the loop gain 
Recall that our design requirements specify that the settling time be less than 2 seconds 
and that the overshoot be less than 5%. The location of the system's closed-loop poles 
provide information regarding the system's transient response. The Control System 
Designer allows you to specify the region in the complex s-plane corresponding to specific 
design requirements. The provided regions correspond to a canonical second-order 
system, but in general are a good place to start from even for higher-order systems or 
systems with zeros. 
 
These desired regions can be added to the root locus plot by right-clicking on the plot and 
choosing Design Requirements > New from the resulting menu. You can add many 



design requirements including Settling time, Percent overshoot, Damping ratio, Natural 
frequency, and generic Region constraint. 
 
Adding our settling time and percent overshoot requirements to the root locus plot 
produces the following figure. 

 

 
settling time and percent overshoot requirements 

The resulting desired region for the closed-loop poles is shown by the unshaded region 
of the above figure. More specifically, the two rays centered at the origin represent the 
overshoot requirement; the smaller the angle these rays make with the negative real-axis, 
the less overshoot is allowed. The vertical line at s = -2 represents the settling time 
requirement, where the farther to left the closed-loop poles are located the smaller the 
settling time is. From examination of the above figure, there are values of the loop gain 
that will place both closed-loop poles in the desired region. This can be seen from the fact 
that the two branches of the root locus are symmetric and pass through the unshaded 



region. Furthermore, since the closed-loop system has two poles with no zeros, placing 
the closed-loop poles in the shown region will guarantee satisfaction of our transient 
response requirements. 
 
You can select a specific pair of closed-loop poles from the resulting figure in order to 
determine the corresponding loop gain that places the poles at that location. For our 
system, let's choose to place the closed-loop poles so that they are located on the vertical 
branches of the root-locus between the real axis and the boundary of the overshoot 
requirement. The pink boxes on the root locus indicate the location of the closed-loop 
poles for the current loop gain. Clicking on the pink boxes and dragging them along the 
root locus to the desired location automatically modifies the controller to place the closed-
loop poles at the indicated position. Let us drag a closed-loop pole to a location near -6 + 
2i. The pole location will be indicated at the bottom of the window along with the 
corresponding damping ratio and natural frequency. We can also check the 
corresponding loop gain in the lower left corner by clicking on C in the Controllers and 
Fixed Blocks tab. The loop gain, as we can see in the figure, is approximately 10. 
 
We can check the closed-loop step response for the system with this new gain by moving 
to the IOTransfer_r2y: step tab. If you have accidentally closed this tab, you can re-open 
it from the Control System Designer window by clicking on the New Plot menu and 
selecting New Step. In response, a new window titled New Step to plot will appear. From 
the Select Responses to Plot menu, then choose IOTransfer_r2y and click the 
button Plot. The response of the output y of the closed-loop system for a step 
reference r will then appear in the Control System Designer window. You can also identify 
some characteristics of the step response. Specifically, right-click on the figure and 
under Characteristics choose Settling Time. Then repeat for Steady State. Your figure will 
appear as shown below. 
 



 
characteristics of the step response 

From inspection of the above, one can see that there is no overshoot and the settling time 
is less than one second, therefore, the overshoot and settling time requirements are 
satisfied. However, we can also observe that the steady-state error is approximately 50%. 
If we increase the loop gain to reduce the steady-state error, the overshoot will become 
too large. You can see this for yourself by graphically moving the closed-loop poles 
vertically upward along the root locus, this corresponds to increasing the loop gain. The 
step response plot will change automatically to reflect the modified loop gain. We will 
attempt to add a lag controller to reduce the steady-state error requirement while still 
satisfying the transient requirements. 

 

Adding a lag controller 
In the above we saw that the overshoot and settling time criteria were met with the 
proportional controller, but the steady-state error requirement was not. A lag 



compensator is one type of controller known to be able to reduce steady-state error. 
However, we must be careful in our design to not increase the settling time too much. 
Let's first try adding a lag compensator of the form given below. 
 

 (4) 
 
We can use the Control System Designer to design our lag compensator. To make 
the Control System Designer have a compensator parameterization corresponding to the 
one shown above, click on the Preferences menu at the top of the Control System 
Designer window. Then From the Options tab, select a Zero/pole/gain parameterization 
as shown below. 
 

 
Options of Control System Designer 

To add the lag compensator, right click on the root locus plot and select Edit 
Compensator. To add a pole zero pair to your compensator, in the Compensator 



Editor window, right-click the Dynamics table and select Add Pole/Zero > lag. After that, 
enter the Real Zero and Real Pole locations as shown in the following figure. 
 

 
Editing a lag controller 

Note that the maximum phase lag contributed by the compensator and the frequency 
where it is located are updated to match the pole and zero locations chosen. 

 

Finding the loop gain with a lag controller 
Notice how the root locus has changed to reflect the addition of the pole and zero from 
the lag compensator as shown in the figure below. We can again choose closed-loop pole 
locations to attempt to achieve our desired transient requirements. Let's attempt to place 
two of the closed-loop poles in our desired region near the boundary of the overshoot 
requirement. For example, a loop gain of approximately 20 (set in the Compensator 
Editor) will place the poles at the positions shown in the figure below. 



 
Choosing poles locations 

 

The corresponding closed-loop step response will then update automatically to match the 
figure shown below. 



 
Corresponding step response 

As you can see, the response is not quite satisfactory even though two of the closed-loop 
poles were placed in the desired region. The reason for this is because the closed-loop 
system no longer has the form of a canonical second-order system. Specifically, there is 
a third pole on the real axis indicated in the root locus plot above that is outside of the 
desired region. The fact that this third pole is to the right of the two conjugate poles placed 
above means that it will slow the system response down, that is why the settling time 
requirement is no longer met. Additionally, the overshoot requirement is met easily even 
though the two conjugate poles are near the edge of the allowed region. This is due again 
to the third pole which is well damped and tends to dominate the response because it is 
"slower" than the other poles. What this means is that we can further increase the loop 
gain such that the conjugate poles move beyond the diagonal lines while still meeting the 
overshoot requirement. 



You can now return to the root locus plot and graphically move the conjugate poles farther 
away from the real axis; this corresponds to increasing the loop gain. As you move the 
closed-loop poles a sufficient distance, the limits of the plot should update automatically. 
Alternatively, you can change the limits manually by right-clicking on the root locus and 
selecting Properties to open the Property Editor. Then you can click on the Limits tab and 
change the imaginary axis limits to [-15,15], for example, as shown below. 
 
 

 
Editing root locus limit 

 

Experiment with different gains (closed-loop pole locations) until you achieve the desired 
response. Below is the root locus with a loop gain of 44 and the corresponding closed-
loop step response. 



 
Tuned root locus 

 



 
Tuned step response 

Now the settling time is less than 2 seconds and the steady-state error and overshoot 
requirements are still met. As you can see, the root locus design process requires some 
trial and error. The Control System Designer is very helpful in this process. Using 
the Control System Designer, it is very easy to tune your controller and immediately see 
the effect on the root locus and various analysis plots, like the closed-loop step response. 
If we had not been able to get a satisfactory response by tuning the loop gain, we could 
have tried moving the pole and zero of the lag compensator or we could have tried a 
different type of dynamic compensator (additional poles and/or zeros). 
 
PID Controller Design 
The proportional integral derivative controller (PID is the parallel configuration of a 
proportional (P), an integral (I), and a derivative controller (D). The Simulink provides the 
PID controller as a block shown in Figure below, where the configuration is shown in 
Figure below.  

 



 

The PID controller in Simulink 

The gain of each parallel controller can be adjusted separately. These gains can be set 
to zero for the controller-type that is not to use as Figure  shows the undeployed derivative 
controller as its gain is zero. The filter coefficient is specific to the derivative controller and 
is active if and only if the derivative controller operates. 

 

 

PID options 

Position Control of a DC Motor 
The based problem for the introduction of the PID tuning is the Simscape’s model of 
closed-loop position control of a DC motor loaded by the inertia of 0.01 𝑘𝑘𝑘𝑘𝑚𝑚2 and a 
rotational damper of 0.01 𝑁𝑁𝑚𝑚/ 𝑟𝑟𝑟𝑟𝑟𝑟

𝑠𝑠
 as shown in Figure , where a tuned PID controller is to 

place between the differential amplifier and the buffer. The voltage source (𝑉𝑉𝑖𝑖) input 
represents the desired angle of movement in radian. The potentiometer provides the unity 
feedback by converting the angular rotation into the voltage in a 1:1 ratio. 



 

Position control system of a DC motor 

For the tuning process, the system of Figure is modelled into the Simulink schematic of 
Figure , in which the PID controller is not providing any advantage to the response as it is 
configured as 𝐾𝐾𝑃𝑃 = 1,𝐾𝐾𝐼𝐼 = 0, and 𝐾𝐾𝐷𝐷 = 0. The test signal is a step input representing the 
rotation of 𝜋𝜋 radian, which is emulated by the 𝜋𝜋 volt input of Figure . The simulation results 
are shown in Figure , where Simulink's and Simscape’s models provide the equivalent 
responses. This setting is the scenario to be tuned through the upcoming techniques. 

 

PID Controller 



 

Equivalent Simulink’s schematic 

 

 

Step response 

 

Ziegler-Nichols Tuning Method 
In 1942, the Ziegler-Nichols method was introduced, which became popular for its 
systematic focus on fast response with reasonable oscillation. In addition, the disturbance 
rejection of the tuned response is also admirable. The method is a kind of heuristic search 
that is based on the multiple steps listed as follow: 

 

• Set 𝐾𝐾𝐼𝐼 and 𝐾𝐾𝐷𝐷 to 0 
• Start with a low level of 𝐾𝐾𝑃𝑃 



• Gradually increase 𝐾𝐾𝑃𝑃 until the system is at the edge of stability 
• Records the obtained  𝐾𝐾𝑃𝑃 as 𝐾𝐾𝑈𝑈, which is meant “the ultimate gain” 
• Records the oscillated period based on 𝐾𝐾𝑈𝑈 as 𝑇𝑇𝑈𝑈 
• Select the type of controllers (P, PI, or PID) 
• Follow the guideline of 𝐾𝐾𝑃𝑃, 𝐾𝐾𝐼𝐼 and 𝐾𝐾𝐷𝐷 in Table based on the selected controller 

 
Gains recommendation of Ziegler-Nichols method 

Controller 
Type 

Controller 
Function 𝐾𝐾𝑃𝑃 𝐾𝐾𝐼𝐼 𝐾𝐾𝐷𝐷 

Proportional 
(P) 𝐺𝐺𝑐𝑐(𝑠𝑠) =  𝐾𝐾𝑃𝑃 0.5𝐾𝐾𝑈𝑈   

Proportional 
Integral (PI) 𝐺𝐺𝑐𝑐(𝑠𝑠) =  𝐾𝐾𝑃𝑃 + 

𝐾𝐾𝐼𝐼
𝑠𝑠

 0.45𝐾𝐾𝑈𝑈 
0.54𝐾𝐾𝑈𝑈
𝑇𝑇𝑈𝑈

  

Proportional 
Integral 
Derivative 
(PID) 

𝐺𝐺𝑐𝑐(𝑠𝑠) =  𝐾𝐾𝑃𝑃 + 
𝐾𝐾𝐼𝐼
𝑠𝑠

 

+𝐾𝐾𝐷𝐷𝑠𝑠 
0.6𝐾𝐾𝑈𝑈 

1.2𝐾𝐾𝑈𝑈
𝑇𝑇𝑈𝑈

 
0.6𝐾𝐾𝑈𝑈𝑇𝑇𝑈𝑈

8
 

 

The process can be initiated by observing the root locus of the system to indicate the 
ultimate gain 𝐾𝐾𝑈𝑈. The overall root locus is displayed in Figure , which is too wide to 
observe the situation around the origin.  

 

 

Root locus of the position control of a DC motor 



The zoomed version is shown in Figure  which clearly indicates the instability issue as the 
proportional gain 𝐾𝐾𝑃𝑃 increases. The ultimate gain 𝐾𝐾𝑈𝑈 is recorded at 68.37, where the locus 
of the dominant poles is crossing the imaginary axis. 

 

 

Zoomed root locus 

 

The next is to record the period of oscillation. The step response based on 𝐾𝐾𝑃𝑃 = 68.37, 
𝐾𝐾𝐼𝐼 = 0, and 𝐾𝐾𝐷𝐷 = 0 is displayed in Figure , in which the oscillation period 𝑇𝑇𝑈𝑈 is obviously 
at 0.1 s. 

 



 

Step response at 𝐾𝐾𝑃𝑃 = 68.37 

 

In this case, the input voltage of 𝜋𝜋𝑉𝑉 represents the angle position of 𝜋𝜋 radian. Based on 
the untuned response of Figure , the target of tuning is to obtain a step response of zero 
steady-state error within 1 second settling time (𝑇𝑇𝑠𝑠) and the overshoot less than 3.5V or 
approximately 11%. A good strategy in PID design is to try the least complicated one first 
and then move on to the higher complicated version if the current one is not working. 
Therefore, a proportional controller based on 𝐾𝐾𝑃𝑃 = 0.5 × 68.37 is tried first, and the 
corresponding step response is shown in Figure , which is clearly not within the 
requirements of 𝑇𝑇𝑠𝑠 ≤ 1𝑠𝑠 and overshoot less than 3.5V. 

 



 

P controlled system of Ziegler-Nichols method 

 

The more complicated PI controller is tried by setting 𝐾𝐾𝑃𝑃 = 0.45 × 68.37 and 𝐾𝐾𝐼𝐼 =
68.37
0.1

× 0.54. The simulated response is shown in Figure 11.21, which is turned out to be 
worse than the response of the P-controlled system as the response of the PI-controlled 
system is unstable. The PID controller is the last one to be tried as the gains are set as 
𝐾𝐾𝑃𝑃 = 0.6 × 68.37, 𝐾𝐾𝐼𝐼 = 68.37

0.1
× 1.2, and 𝐾𝐾𝐷𝐷 = 68.37 × 0.1 × 0.6

8
. The simulated response is 

shown in Figure 11.22, in which the settling time is within the requirement of 1s, but the 
overshoot is clearly far from expected. This sample shows a scenario that the Ziegler-
Nichols method is not able to deliver a required response. However, this does not mean 
that this tuning method is not good as it has famously adapted for many decades since its 
introduction. The solution from this approach is a good starting set of gains that can be 
refined iteratively to obtain the desired response. In addition, the Ziegler-Nichols method 
is well known for its aggressive characteristics. Therefore, a fast but high overshoot is 
quite common to the tuned response. By the way, please be reminded that there is no 
silver bullet to track down every problem as every system has its own characteristics to 
be treated in customization. 

 

Desired output 

Actual output 



 

PI controlled system of Ziegler-Nichols method 

 

 

PID controlled system of Ziegler-Nichols method 

 

Desired output 

Actual output 

Desired output 

Actual output 



Manual PID Tuning Method 
A PID controller can be manually tuned by adjusting 𝐾𝐾𝑃𝑃,𝐾𝐾𝐼𝐼 , and 𝐾𝐾𝐷𝐷 based on the guideline 
shown in Table .  

 

Effects of PID controller based on each parameter 

Action Rise 
Time Overshoot Settling 

Time 
Steady-

State error 

Increasing KP Decrease Increase Minimal 
effect Decrease 

Increasing KI Decrease Increase Increase Significantly 
Decrease 

Increasing KD 
Minimal 
effect Decrease Decrease No effect 

 

Please be noted that the listed guideline is applicable to many systems but not all. 
Therefore, the designer is recommended to observe the effects and adapt rather than be 
strict with the guideline. By the way, the guideline of Table  will be tested on the position 
control system of a DC motor in Figure  that was tested on the Ziegler-Nichols method. 
The initial set trial is not to apply the integral controller as the system is already of type-I, 
in which the steady-state error is zero by default. The parameters to be set are then 𝐾𝐾𝑃𝑃 
and 𝐾𝐾𝐷𝐷, which are tried and simulated as shown in Figure . 

 

 

Step responses based on manual tunings 

Desired output 

KP=0.5, KI=0,KD=0.5 

KP=0.75, KI=0,KD=0.25 

KP=0.75, KI=0,KD=0.1 



The first trial is based on the small value of 𝐾𝐾𝑃𝑃 and 𝐾𝐾𝐷𝐷 at 0.5. The obtained response is 
too slow on the settling time and too low on the overshoot. This result clearly implies that 
𝐾𝐾𝑃𝑃 is too low and 𝐾𝐾𝐷𝐷 is too high. The second trial is then based on  𝐾𝐾𝑃𝑃 = 0.75 and 𝐾𝐾𝐷𝐷 =
0.25. The response this time is faster but is still a little bit too slow as the overshoot is too 
much oppressed. The last trial keeps the 𝐾𝐾𝑃𝑃 at 0.75 while the 𝐾𝐾𝐷𝐷 is reduced again to only 
0.1. The obtained response looks good as it passes the settling time requirement of 1 s 
with a slight overshoot of less than 3.5V. However, if the design of 𝐾𝐾𝑃𝑃 = 0.75 and 𝐾𝐾𝐷𝐷 =
0.1 is to be used practically, the control signal sent to the motor is observed, which must 
not be over the motor's specification of 24V. The output of the PID controller is then 
observed and displayed in Figure, which is maximumly at around 35V. Therefore, this 
design is good at the model level but may not be suitable for practical implementation.  

 

 

Controlling signal of 𝐾𝐾𝑃𝑃 = 0.75 and 𝐾𝐾𝐷𝐷 = 0.1 

It is the act of the differentiator that initially raises the controlling voltage beyond the 
limitation because it detects the slope of the error and converts it to the corresponding 
control signal. As the response is rising fast, the error slope is increasing, which will make 
the differentiator term increase. Therefore, the modification is to slightly decrease the 𝐾𝐾𝐷𝐷 
from 0.1 to 0.07, lessening the peak of the controlling signal. The simulated comparison 
responses are shown in Figure, where the decreased 𝐾𝐾𝐷𝐷 does increase the overshoot and 
settling time but is still within the requirements. 

 



 

Tuned responses with different 𝐾𝐾𝐷𝐷 

The reason for this minor tuning is simulated and displayed in Figure, which presents the 
controlling signal that is to be fed to the DC motor. Based on scarifying the little amount 
of overshoot and settling time of the response, the peak controlling signal is now within 
the limit. 

 

Controlling signal based on 𝐾𝐾𝑃𝑃 = 0.75 and 𝐾𝐾𝐷𝐷 = 0.07 

Desired output 

KP=0.75, KI=0,KD=0.1 

KP=0.75, KI=0,KD=0.07 



A practical implementation of the finalized design of the PID controller is to be delivered 
to complete the example. It is actually a PD controller based on 𝐾𝐾𝑃𝑃 = 0.75, 𝐾𝐾𝐷𝐷 = 0.07, and 
𝑁𝑁 = 100. The first task is to set the controller's function, which is resulted in: 

 

𝐺𝐺𝑐𝑐(𝑠𝑠) = (0.75 + 0.07 × 100)
𝑠𝑠 + 0.75 × 100

0.75 + 0.07 × 100
𝑠𝑠 + 100

 

Based on the calculations, the PD controller function is reduced to: 

 

𝐺𝐺𝑐𝑐(𝑠𝑠) = 7.75
𝑠𝑠 + 9.6744
𝑠𝑠 + 100

 

There are choices of practical PID circuits. In this case, a simplified structure is deployed 
as shown in Figure, which is enough to supply the control function of eq. 

 

 

Simplified PD controller in application 

PD Controller 

Voc(s) Vic(s) 



Based on the circuit’s parameters of the deployed controller, its circuit-based function is: 

𝑉𝑉𝑜𝑜𝑐𝑐(𝑠𝑠)
𝑉𝑉𝑖𝑖𝑐𝑐(𝑠𝑠)

= −
𝑅𝑅𝑓𝑓
𝑅𝑅𝑖𝑖

𝑠𝑠 + 1
𝑅𝑅𝑓𝑓𝐶𝐶𝑓𝑓

𝑠𝑠 + 1
𝑅𝑅𝑖𝑖𝐶𝐶𝑖𝑖

 

The left tasks are the parameter matching of eq. 11.6 and 11.7. The first set of parameter 
to be matched is 𝑅𝑅𝑖𝑖 and 𝐶𝐶𝑖𝑖 as: 

 

1
𝑅𝑅𝑖𝑖𝐶𝐶𝑖𝑖

= 100  

Then, 𝑅𝑅𝑖𝑖 is set to 100𝑘𝑘Ω, which will make 𝐶𝐶𝑖𝑖 = 100𝑛𝑛𝑛𝑛 for matching the condition of eq. 
5.27. Based on 𝑅𝑅𝑖𝑖 = 100𝑘𝑘, 𝑅𝑅𝑓𝑓 is easily set to 775𝑘𝑘Ω according to the condition: 

 

𝑅𝑅𝑓𝑓
𝑅𝑅𝑖𝑖

= 7.75  

The final circuit parameter to be obtained is the 𝐶𝐶𝑓𝑓 which is based on the condition: 

 

1
𝑅𝑅𝑓𝑓𝐶𝐶𝑓𝑓

= 9.6744  

As 𝑅𝑅𝑓𝑓 is already set to 775𝑘𝑘Ω, 𝐶𝐶𝑓𝑓 is forced to be 133.37𝑛𝑛𝑛𝑛. The circuit parameters of the 
PD controller are now completely determined and set to Simscape’s model of Figure . The 
simulations are conducted to compare the performance of Simulink's mathematical model 
and Simscape’s practical model. The compared responses are displayed in Figure , 
indicating the high level of compatibility as the two simulated responses are almost 
identical. The control signal of Simscape’s model is also simulated and compared to the 
control signal of Simulink's model as displayed in Figure , where they are shown to be 
compatible and within the limit. By the way, the difference between the simplified PD 
controller of Figure  and the full-scale PD controller previously introduced in Figure  is the 
support of further tuning. The simplified model employs only one op-amp but cannot be 
tuned easily as circuit parameters are tightly dependent on each other. The full-scale 
version requires at least three op-amps but can be tuned semi-freely through a 
potentiometer which is actually a variable resistor. Therefore, the choices of 
implementation depend on what the designer emphasizes, as there always are pros and 
cons to be traded off in engineering designs.  

 



 

Responses based on compatible models 

 



 

Control signals based on compatible models 

It is clear that the tuning of a control system is to be conducted based on multiple concerns 
as there is no single approach to fit all the problems. The design is often needed to be in 
the loops of calibration, but the knowledge in guidelines and tools can significantly help 
decrease the required time compared to the blind search. 



Exercise

• Model a centrifugal pump system
• To deliver water of 200m length and 30m height
• Desired response is the flowrate
• Input to the process G(s) is the input voltage of a DC motor that drives the pump

• Design a controller to have zero steady-state error
• Minimizing the settling time



Lecture 03: Intelligent algorithms 
for control system
2 sessions, 4 hrs



Lesson 3: Artificial Neural Network Controller 
Artificial Neural Network (ANN) is a collection of elements called ‘Neuron’ in a systematic 
way. A neuron is a simulation of a biological neuron in a human nervous system. An 
artificial neural network is inspired by the human nervous system. A biological neuron is 
a building block of a human nervous system. It can take multiple inputs at a time through 
sensory inputs (like 5 senses: touch, see, smell, hear and taste) and other neurons, 
process the inputs through its nucleus, and outputs the processed information, if it is 
significant. See Figure 3.1a for the basic structure of a biological neuron. A single neuron 
is not able to contribute much in overall decision-making processes, however, the ability 
to decision making and thoughtfulness comes from the ability to work in parallel. There 
are billions and trillions of neurons in a human nervous system, which are working in a 
parallel manner; each in an independent way. Since they are too many, if some of them 
are notworking, the network performance is not affected much. Hence, such a structure 
works in a parallel but asynchronous way and offers a high level of fault tolerance with 
distributed control. As per the famous saying, ‘I think therefore I am’ by Rene Descartes 
(1637), intelligence results from the ability to think. If such a concept is incorporated within 
a machine, would the machine be able to think or not is the basic inspiration behind the 
artificial neural network. Figure 3.1b presents a simulation of a neuron, known as an 
artificial neuron. As stated, the ability to think and hence intelligent decision making comes 
from the collection of a large number of neurons working together towards a global 
solution. For this, the neurons should be arranged in a proper structure or topology. 
Hopfield network, perception, and multilayer perceptron with their variations, and self-
organizing maps are a few prominent neural network topologies to experiment with 
artificial neural networks. The following section describes these artificial neural network 
models in brief. 

 

 

Figure 3.1 Biological and artificial neuron 

 



Single Perceptron 
Frank Rosenblatt (1958) proposed an artificial neuron inspired by the human nervous 
system between the eyes and the brain. The main objective of the group of neurons 
between the eye and brain is to perceive the image acquired. Hence, the name of the 
suggested model of a neuron is ‘Perceptron’. As per the proposed model, the perceptron 
welcomes multiple inputs, which are weighted in nature. Beside the weighted inputs, the 
perceptron also has a processing function, called activation or transfer function. The 
activation function processes the acquired inputs. There is a threshold function along with 
a neuron which determines the further action of the neuron. If the processed value 
generated from the weighted inputs to the neuron is significant enough, the neuron 
communicates the output by sending it further—to other neurons, if any. This phenomenon 
is called firing the output i.e. a perceptron’s basic function is to collect several weighted 
inputs, process it, and fires the processed value further if the processed value is 
significant. As a perceptron can choose to fire the output further or not; it is used to divide 
the problem space into two classes. Hence, all linear- kind of ‘to be or not to be’ type of 
problems can be effectively solved with a single perceptron. Figure 3.2 illustrates a single 
perceptron solving a problem of selection of a course for a student to study further based 
on inputs of parents. Figure 3.2 illustrates a single perceptron that solves a classical ‘to 
be or not to be’ problem for the selection of a course.  
 

 
Figure 3.2 Selection of a course 

 
As shown in the figure the neuron takes two inputs from both the parents about a possible 
course and processes it through an activation function available in the nucleus of the 
neuron. Here, the activation function is ∑WiXi. Parents opinions are encoded as X1 (0.7) 
and X2 (0.4). The relationship strengths of the candidate who wants to select the course 
with the parents are given asW1 (0.3) andW2 (0.6) for both the parents respectively. As 
per the sample values shown in the figure, the activation function calculates the value 
0.45, which is less than the threshold value 0.6. Hence, the neuron decides not to fire, 
and the course is not selected. Different weights and values of parents’ opinions can be 
tried for a better understanding of the problem. This perceptron classifies the problem into 
two categories to select or not to select the course; hence, called the linearly separable 



problem. In the case of linearly separable problems, data are usually separated by a line 
(hyper-plane in an advanced dimension).  
A generic learning mechanism for a linearly separable problem, which is also known as 
‘fixed increment perceptron learning’ can be given as shown in the following code.  
 
 1. Let x(n) = input vector given as {+1, x1(n), x2(n), …,xm(n)} 

w(n) = weight vector as {b, w1(n), w2(n), …, wm(n)} 
b = bias 
a(n) = actual response 
r(n) = desired response 
l = learning rate parameter 

 2. Initialize w(0) = 0 

 3. Activate perceptron by applying input vector x(n) and desired response r(n) 

 4. Compute actual response of perceptron a(n) = f[w(n)x(n)] 

 5. If r(n) and a(n) are different then w(n + 1) = w(n) + l[d(n)-a(n)]x(n), where r(n)= 
±1 

 6. Go to step 3 till all patterns properly classified 

In the case of a popular tool called Support Vector Machine, the same strategy is 
implemented. The support vector machine is a simple neural network model that 
considers the given data and tries to classify them into two classes. Through the SVM, 
classification is done in the presence of data. 

 

Multilayer Perceptron 
As stated, a single perceptron cannot solve non-linearly separable problems, which are 
much complicated but fall into real-life problems category; hence, a multilayer perceptron 
structure is proposed. The structure is illustrated in Figure 3.3. 
 



 
Figure 3.3 Multilayer perceptron 

 

In the multilayer perceptron, neurons are arranged in different layers. These neurons are 
often called nodes. These layers are called the input layer, hidden layer, and output layer. 
The input layer is responsible for collecting input from the environment. The output layer 
produces the output. Hidden layers are invisible, and help in learning. At least one layer 
of each category is required to form a multilayer neural network. Hidden layers are 
generally many; in case of simple multilayer perceptron there may be one, two, or three 
hidden layers. However, in the case of deep learning, there are multiple hidden layers. 
Typically, the input and output layers are one each. Depending on applications more than 
one input and more than one output layers can be planned. The following algorithm 
illustrates popular heuristics to design a multilayer perceptron. 

 

1. Verify the nature of the problem. Typically where many data are available but 
there is a lack of generalized logic, one may go for multilayer perceptron ANN 

2. Select critical parameters that play an important role in decision making. For 
this, one needs to study the data available on hand. Alternatively, a few 
successful cases where such decisions are made can be considered. Total 
number of such important and critical parameters is, say ‘n’ 



3. Create an input layer (I) containing ‘n’ number of neurons. Also, assign its 
activation function as the value of the input 

4. Identify possible choices/output options for the problem. Say this number is ‘m’ 

5. Create one or two hidden layers (H1 and H2) containing an average of input 
and output number of nodes; that is (‘n’ + ‘m’)/2. Assign activation function in 
each neuron of every layer. Typical activation functions are softmax, sigmoid, 
hyperbolic tangent, rectified linear activation unit, etc. The activation function 
at the first hidden layer involves input values from the input layer nodes with 
their weights. The activation function at the second hidden layer involves the 
previous layer (hidden) nodes’ values with their weights 

6. Create an output layer (O) containing ‘m’ number of nodes. Assign an output 
activation function to each neuron in the output layer. The activation function 
at the output layer involves values from the last hidden layer nodes with their 
weights 

7. Connect all neurons in such a way that ‘each neuron is connected in a forward 
direction to every neuron of the adjacent layer’. This makes the network fully 
connected, feed-forward (as all the connections are in a forward direction only) 
multilayer neural network 

8. Assign random weights to each connection 

9. Train the network with collected valid data sets 

 

Design NARMA-L2 Neural Controller in Simulink 
The neurocontroller described in this section is referred to by two different names: 
feedback linearization control and NARMA-L2 control. It is referred to as feedback 
linearization when the plant model has a particular form (companion form). It is referred 
to as NARMA-L2 control when the plant model can be approximated by the same form. 
The central idea of this type of control is to transform nonlinear system dynamics into 
linear dynamics by canceling the nonlinearities. This section begins by presenting the 
companion form system model and showing how you can use a neural network to identify 
this model. Then it describes how the identified neural network model can be used to 
develop a controller. This is followed by an example of how to use the NARMA-L2 Control 
block, which is contained in the Deep Learning Toolbox™ blockset. 

 

Identification of the NARMA-L2 Model 
As with model predictive control, the first step in using feedback linearization (or NARMA-
L2) control is to identify the system to be controlled. You train a neural network to 
represent the forward dynamics of the system. The first step is to choose a model 
structure to use. One standard model that is used to represent general discrete-time 
nonlinear systems is the nonlinear autoregressive-moving average (NARMA) model: 



 

 (3.1) 

 

where u(k) is the system input, and y(k) is the system output. For the identification phase, 
you could train a neural network to approximate the nonlinear function N. This is the 
identification procedure used for the NN Predictive Controller. 

If you want the system output to follow some reference trajectory 
y(k + d) = yr(k + d), the next step is to develop a nonlinear controller of the form: 

 

 (3.2) 

 

The problem with using this controller is that if you want to train a neural network to create 
the function G to minimize mean square error, you need to use dynamic backpropagation. 
This can be quite slow. One solution, proposed by Narendra and Mukhopadhyay, is to 
use approximate models to represent the system. The controller used in this section is 
based on the NARMA-L2 approximate model: 

 

 (3.3) 
 

This model is in companion form, where the next controller input u(k) is not contained 
inside the nonlinearity. The advantage of this form is that you can solve for the control 
input that causes the system output to follow the reference y(k + d) = yr(k + d). The 
resulting controller would have the form 

 

 (3.4) 

 

Using this equation directly can cause realization problems, because you must determine 
the control input u(k) based on the output at the same time, y(k). So, instead, use the 
model 

 

 (3.5) 



 

where d ≥ 2. The following figure shows the structure of a neural network representation. 

 

 
Figure 3.4  Structure of a neural network representation 

 

NARMA-L2 Controller 
Using the NARMA-L2 model, you can obtain the controller 

 

 (3.6) 

 

which is realizable for d ≥ 2. The following figure is a block diagram of the NARMA-L2 controller. 



 

 

Figure 3.5 Bock diagram of the NARMA-L2 controller 

 

This controller can be implemented with the previously identified NARMA-L2 plant model, 
as shown in the following figure. 

 



 

Figure 3.6  NARMA-L2 plant model 

 

Use the NARMA-L2 Controller Block 
This section shows how the NARMA-L2 controller is trained. The first step is to copy the 
NARMA-L2 Controller block from the Deep Learning Toolbox block library to the 
Simulink® Editor. An example model is provided with the Deep Learning Toolbox software 
to show the use of the NARMA-L2 controller. In this example, the objective is to control 
the position of a magnet suspended above an electromagnet, where the magnet is 
constrained so that it can only move in the vertical direction, as in the following figure. 

 



 

Figure 3.7 A magnet suspended above an electromagnet 

 

The equation of motion for this system is  

 

 (3.7) 

 

where y(t) is the distance of the magnet above the electromagnet, i(t) is the current flowing 
in the electromagnet, M is the mass of the magnet, and g is the gravitational constant. 
The parameter β is a viscous friction coefficient that is determined by the material in which 
the magnet moves, and α is a field strength constant that is determined by the number of 
turns of wire on the electromagnet and the strength of the magnet. To run this example: 

 

1. Start MATLAB®. 

2. Type narmamaglev in the MATLAB Command Window. This command opens 
the Simulink Editor with the following model. The NARMA-L2 Control block is 
already in the model. 



 

 

Figure 3.8 narmamaglev sample 

 

3. Double-click the NARMA-L2 Controller block. This opens the following window. This 
window enables you to train the NARMA-L2 model. 

 



 

Figure 3.9 Plant identification 

 

4. Click Generate Training Data. The program generates training data by applying a series 
of random step inputs to the Simulink plant model. The potential training data is then 
displayed in a figure similar to the following. 

 



 

Figure 3.10 Potential training data 

 

5. Click Accept Data, and then click Train Network in the Plant Identification window. Plant 
model training begins. The training proceeds according to the training algorithm (trainlm 
in this case) you selected. After the training is complete, the response of the resulting 
plant model is displayed, as in the following figure. (There are also separate plots for 
validation and testing data, if they exist.) You can then continue training with the same 
data set by selecting Train Network again, you can Erase Generated Data and generate 
a new data set, or you can accept the current plant model and begin simulating the closed 
loop system. For this example, begin the simulation, as shown in the following steps. 

 



 

 

Figure 3.11 Resulting plant model 

 

6. Return to the Simulink Editor and start the simulation by choosing the menu option 
Simulation > Run. As the simulation runs, the plant output and the reference signal are 
displayed, as in the following figure. 

 



 

Figure 3.12  Simulation result 
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Exercise

• Model a centrifugal pump system
• To deliver water of 200m length and 30m height
• Desired response is the flowrate
• Input to the process G(s) is the input voltage of a DC motor that drives the pump

• Applied an ANN-based controller to the system



Lecture 04: Application of 
industrial control
2 sessions, 4 hrs





















Simscape Multibody







Exercise

• Model a 2 joints mechanical arms based on Simscape Multibody
• Specify its functions
• Model its mechanics
• Define the control signal
• Define the feedback signal



Lecture 05: Plant simulation and 
emulation
2 sessions, 4 hrs



Software and communications
• MathWorks Simulink

• Request, read, and write to GICS

• Simulink Desktop Real-Time
• Synchronize Simulink to real-time processing and communication

• Simscape
• Simulate physical systems (optional)

• Communication
• UDP

• PLC  GICS   Simulink
• GICS is the middleman to link PLC and Simulink
• Simulink emulates practical process
• PLC controls the process



Emulation concept
PLC GICS card

MathWorks Simulink
Direct connected

I/O
Analog voltage

UDP packet
binary

Controller Virtual 
Process or 
Plant



Communication loop

Simulink request 
PLC’s outputs from 

GICS

GICS sends PLC’s 
outputs to 
Simulink

Simulink processes 
PLC’s outputs and 

generates the 
process responses

Simulink sends 
process’s response 

back to GICS

PLC examine the 
process’s response 

and synthesizes 
the control signals 



Scenario

PLC’s 2-channel output to GICS
• Read by Simulink
• From PLC: -27000 to 27000

• Sawtooth wave
• 16-bit signed integer

• GICS’s record: 0 – 35xx
• 12-bit unsigned integer

• Simulink’s read: 0 – 35xx
• 16-bit unsigned integer

Simulink’s 4-channel output to GICS
• Read by PLC
• From Simulink: 50 – 950

• Sinewave
• 16-bit unsigned integer

• GICS’s record: 50 - 950
• 10-bit unsigned integer

• PLC’s read: -25000 ± Δ to 25000 
± Δ

• 16-bit signed integer



Configuration
PLC GICS card

MathWorks Simulink
Direct connected

I/O
Analog voltage

UDP packet
binary

-Read process output 
from %IW0
-Send control signal via 
%QW2

-Read control signal 
from PLC directly to AI3
-Read process output 
from Simulink via UDP 
packet and keep in AO1

-Read control signal 
from GICS’s AI3
-Send UDP packet to 
update GICS’s AO1



GICS communication cycles

-Triggered at the rising edge
-Loop of sequences are:
 - Send request
 - Read from GICS
 - Write response to GICS



Request setting



Read setting



Write setting



Virtual Process

Conversion of 12-bit 
unsigned integer 

input to ±10V
Conversion of ±10V output to 10-bit unsigned integer but 

sent as 16-bit unsigned integer

Monitor virtually 
real input and 

output voltages



Exercise
• Model an industrial bottle filling process

• Model the filler and other mechanics in Simulink
• All control signals (digital and analog) are from PLC
• Use GICS as the interface between PLC and the virtual process in Simulink
• Use HMI as a SCADA
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Lab 01: Analog I/O of PLC



Setting up the project

• Setting
• Create new project named “Lab01”
• Add PLC
• Config the network

• Config analog ports
• Analog I/O module is in the first slot 

as shown in the figure on the right
• Inputs are the addresses labeled as 

“%IW_ ”
• Outputs are the address labeled as 

“%QW _” 
• Use %IW0 and %QW0



Analog Module

Inputs
• 5 channel
• Datatype: integer
• Cycle time: 1ms
• -10 V to +10 V
• Resolution: 16-bit including sign

Outputs
• 2 channel
• Datatype: integer
• Cycle time: 1ms
• -10 V to +10 V
• Resolution: 16-bit including sign







Mapping input
• A tachometer can sense rotational speed from 0 to 4000 rpm

• Output: -10V (0 rpm) – 10V (4000 rpm)

• Compile PLC’s input into rpm
• -10 V input  -27648 = 0 rpm
• 10 V input  27648 = 4000 rpm
• rpm = (input + 27648) x 4000/55296

• Lab
• Write a ladder diagram to map this input to rpm







Mapping output
• A linear mechanical actuator of distance 0 to 10cm

• Input: -10V (0 cm) – 10V (10 cm)

• Compile cm into PLC’s output
• -10 V output  -27648 = 0 cm
• 10 V output  27648 = 10 cm
• output = -27648 + cm x (55296/10)

• Lab 
• write a ladder diagram to generate this output



Exercise

• Design a mapping of
• Input ranged from -7V to 7V that linearly represent the temperature of -50 to 

50 degree Celsius
• Output to a DC drive of a DC motor

• 0V  0 rpm
• 5V  5000 rpm

• Write the ladder diagrams of both cases



Lab 02: Analog I/O of emulation 
card





Configuration

PLC GICS card

Output

Output

Input

Input

PLC I/O are programmed 
in TIA Portal

GICS’s I/O are manipulated 
in a special program called 
“GICS Tester”.



Ethernet

Outputs

Outputs

Inputs

Inputs

PLC GICS card

Controlling/
monitoring

Programming/
monitoring

Wiring



Card’s IP 
address

Card’s analog 
outputs
or PLC’s analog 
inputs

Card’s analog 
inputs
or PLC’s analog 
outputs

Card’s digital outputs
or PLC’s digital inputs

Card’s digital inputs
or PLC’s digital 
outputs



Detail of Analog I/O

Outputs
• 8 channels
• Voltage range: -10V to 10V
• Resolution: 10-bit
• 0V at 512
• -10V at 0
• 10V at 1023

Inputs
• 8 channels
• Voltage range: -10V to 10V
• Resolution: 12-bit
• 0V at 2048
• -10V at 0
• 10V at 4095



I/O equations

• Vo  required output voltage
• Od  10-bit decimal of output voltage
• Od = ⌊0 + (Vo + 10) ⌉(1024/20)

• Round to the nearest integer

• Vi  sensed input voltage
• Id  read 12-bit input decimal

• Vi = −10 + Id(20/4095)



Operating the card
- Open the GICS Tester
- Put the IP address “10.1.29.194”
- Check if the status is blue or not



If the status bar in the GICS Tester is not blue, 
reset the card at this button.



Exercise

• Convert the following output 
voltage to the card’s output

• -10V
• -8V
• -5V
• 0V
• 4V
• 7V
• 9V

• Interpret the following card’s 
input to input voltage

• 10
• 1000
• 1700
• 2400
• 3900
• 4050
• 4095



Lab 03: Emulation of PLC analog 
I/O



Configuration

PLC GICS card

Output

Output

Input

Input

PLC I/O are programmed 
in TIA Portal

GICS’s I/O are manipulated 
in a special program called 
“GICS Tester”.



Ethernet

Outputs

Outputs

Inputs

Inputs

PLC GICS card

Controlling/
monitoring

Programming/
monitoring

Wiring



Physical connection

PLC Emulation
card

%IW0

%IW2

%IW4

%IW6

%QW0

%QW2

±10V
16-bit
reading

AO1

AO2

AO3

AO4

AI3

AI4

±10V
10-bit
sending

±10V
16-bit
sending

±10V
12-bit
reading



Configuration

• Create a project with PLC 
of firmware version 2.5



Network configuration

Select Ethernet symbol

Add new subnet

Set IP and Profinet



Tag table

Input mapping

Output mapping

Memory declaration
for store each input



Ladder 
diagram for 
reading and 
sending

4-channel reading
and store in memory

2-channel sending of
value -10000



Compile and load config/code to PLC
In practical, at this point, the code and config are to be loaded to the destination PLC.

TIA Portal run in a PC

Compiled codes and 
configs

Download

If there is no error, the TIA Portal and the targeted PLC are synchronize. The PLC will run automatically but the 
Portal can monitor and debug.

TIA Portal run in a PC
Synchronize



Compile and download to the PLC

Select Ethernet card to be targeted 
interface



Search for the PLC in the subnet



Found the targeted PLC and select it

Load the config and code to the PLC



Check the loading option

Load the config and code to the PLC



Exercise

• Send the following value from 
the card and observe the value 
read by the PLC

• 0
• 100
• 300
• 500
• 800
• 1000

• Send the following value from 
PLC and observe the value read 
by the card

• -27648
• -15000
• -5000
• 0
• 10000
• 20000



Lab 04: Simulation of analog 
output



RampFunction
• Act as an integrator

• Increase or decrease by a certain amount 
(SlewRate) over a second)

• Naturally linear but can adjust SlewRate to act 
as nonlinear function

• Can simulate output as a function of 
driving force

• Output both positive and negative with 
adjusted limitation (UpperLimit or 
LowerLimit)

• Can reset to the specified value 
(SubstituteOutput) which is default at “0”





Output will gradually increase or 
decrease by the defined “SlewRate” to 
the “Input”

There are four “SlewRate” to be set:
- PositiveRising
- PositiveFalling
-NegativeRising
-NegativeFalling

Output is bounded by UpperLimit and 
LowerLimit



PLC and HMI tags
PLC

HMI



Config and link Slide input and bar output to 
HMI tags



Add a RampFunction block



Link input and output to the RampFunction



Ex: Simulate the function of y(t) = 5t via the RampFunction
The slope of this function is 5, so SlewRate = 5

Set the upper and lower limits

-Set the Rising and Falling slew rate
-Only positive rising and falling are set 
because the boundary is from 0 - 100



Simulate both PLC 
and HMI



Set the slide bar on 
the left to set the 
desired output to 
100

The output bar on 
the right will move 
up to 100 in 20 
seconds 



Exercise

• SlewRate can be non-constant via a specific function to generate 
nonlinear output

• Ex. Output from a RampFunction can be input to another RampFunction

• Output can be manipulate by external function to further adjusting
• Try to simulate the following functions:

• y(t) = 5t + 100
• y(t) = t2



Lab 05: Simulation of feedback 
control



A simple feedback control system

Equivalent to each 
other: one in 
feedback form, 
another in 
reduced transfer 
function form



Signals



Implementing an Integrator by RampFunction

SlewRate = Input of an 
integrator

RampFunction Output = 
Integrator output



PLC Tag table
Input OutputSlew

For setting SlewRate in 
RampFunction

For resetting RampFunction

For forcing RampFunction’s 
output up or down



Ladder Diagram for feedback loop
Input OutputSlew



Slew < 0: Input is less than output, forcing 
output down to match the input

Slew > 0: Input is greater than output, 
forcing output up to match the input

Output of RampFunction will move up or 
down according to the variable “force” 
applied to its Input



To set the SlewRate of RampFunction,
a positive real value is required.

Make slew 
positive value

Make slew to be 
real value



Simulation

Set “Input”:P to 100

Output should 
reach 100 in 4 
seconds



Exercise

• Config and simulate a feedback control system of the following figure 
in PLC.



Lab 06: Emulation of analog 
output



Software and communications
• MathWorks Simulink

• Request, read, and write to GICS

• Simulink Desktop Real-Time
• Synchronize Simulink to real-time processing and communication

• Simscape
• Simulate physical systems (optional)

• Communication
• UDP

• PLC  GICS   Simulink
• GICS is the middleman to link PLC and Simulink
• Simulink emulates practical process
• PLC controls the process



Emulation concept
PLC GICS card

MathWorks Simulink
Direct connected

I/O
Analog voltage

UDP packet
binary

Controller Virtual 
Process or 
Plant



Communication loop

Simulink request 
PLC’s outputs from 

GICS

GICS sends PLC’s 
outputs to 
Simulink

Simulink processes 
PLC’s outputs and 

generates the 
process responses

Simulink sends 
process’s response 

back to GICS

PLC examine the 
process’s response 

and synthesizes 
the control signals 



Scenario

PLC’s 2-channel output to GICS
• Read by Simulink
• From PLC: -27000 to 27000

• Sawtooth wave
• 16-bit signed integer

• GICS’s record: 0 – 35xx
• 12-bit unsigned integer

• Simulink’s read: 0 – 35xx
• 16-bit unsigned integer

Simulink’s 4-channel output to GICS
• Read by PLC
• From Simulink: 50 – 950

• Sinewave
• 16-bit unsigned integer

• GICS’s record: 50 - 950
• 10-bit unsigned integer

• PLC’s read: -25000 ± Δ to 25000 
± Δ

• 16-bit signed integer



Simulink’s diagram of “GICS_rw.slx”

2-channel output from PLC

4-channel input
to PLC



PLC’s tag



Ladder diagram



Real-Time synchronizing 
between PLC and 
Simulink

PLC’s output

Simulink’s output



-Signal’s condition at 
the end of Simulink’s 
real-time session
-PLC is still working



Exercise
• Put a plant process between PLC’s 

output and Simulink’s output
• Noted that the sampling time is 0.5 

second
• Any 1st-order analog transfer 

function: one input, one output
• -9V ≤ Input/Output ≤ 9V

• Put the appropriate number 
conversion to I/O

• Implement as a subsystem as shown 
in the below figure

• The process should be performed 
well by 0.5s sampling time



Lab 07: Emulation of feedback 
control



Emulation of a simple 
feedback loop

• Controller is a PLC
• the process 𝐺𝐺(𝑠𝑠) = 1

𝑠𝑠2+5𝑠𝑠
 is 

implemented in Simulink as a 
virtual process

• Step input of 5V is set in PLC
• Control signal (input - output) is 

provided by PLC
• Output is provided by Simulink



Configuration
PLC GICS card

MathWorks Simulink
Direct connected

I/O
Analog voltage

UDP packet
binary

-Read process output 
from %IW0
-Send control signal via 
%QW2

-Read control signal 
from PLC directly to AI3
-Read process output 
from Simulink via UDP 
packet and keep in AO1

-Read control signal 
from GICS’s AI3
-Send UDP packet to 
update GICS’s AO1



Simulink Framework

AI3

AO1



Virtual Process

Conversion of 12-bit 
unsigned integer 

input to ±10V
Conversion of ±10V output to 10-bit unsigned integer but 

sent as 16-bit unsigned integer

Monitor virtually 
real input and 

output voltages



PLC tags



Ladder diagram

5V input to the loop



Emulation through GICS with 0.5s sampling 
period

Steady-state output read by PLC

Control 
voltage sent 
by PLC

Control voltage read by 
Simulink

Process output voltage 
sent by Simulink

The steady-state output is capped at around 3.35V because the control voltage sensed by Simulink is around 
0. However, the PLC is meant to send 1.65V control signal. 

Therefore, the offset voltage of the control voltage is around -1.65V.
Vcs  Control voltage read by Simulink, Vcp  Control voltage sent by PLC

Vcs = Vcp – 1.65



Calibration of the control signal from PLC

Added variable

Calibration by added 1.65V 
to the control signal

Calibrated control voltage is 
sent to PLC’s output

In steady-state, the control voltage in PLC and Simulink 
are almost identical at zero.
However, the process output read by PLC is a little bit 
higher than the process output sent by Simulink
Therefore, there is also an offset in GICS’s output to PLC.



Control and output voltages of the virtual 
process

Control voltage read by 
Simulink

Process output voltage 
sent by Simulink

-The reference must be measured from the virtual process 
not the PLC I/O.
-It is where the real work is virtually done.
-It is emulating a physical hardware and sensor.
-In Simulink’s simulation, we can assume that sensor is not 
wrong. Therefore, calibration must be done in PLC coding.
-However, in real practical equipment, sensor should be test 
for its validity.



Exercise

• Calibrate the PLC reading from 
Simulink virtual process output

• Make the emulation response 
closed to the theory shown in 
the right figure.

• Config the HMI to show the 
target response, the process 
output, and the control signal.



Lab 08: PLC controllers



Second-order process
• Simulation of all-pole 

second-order response 
via Filter_PT2 block

• You can specify the 
following filter 
parameters:

• Proportional gain (K)
• Time constant (τ)
• Damping (ζ)

• ω = 1/τ
• τ = 1/ω

𝐺𝐺 𝑠𝑠 = 𝐾𝐾
𝜔𝜔𝑛𝑛2

𝑠𝑠2 + 2𝛿𝛿𝜔𝜔𝑛𝑛𝑠𝑠 + 𝜔𝜔𝑛𝑛2



Tag table



Proportional-Integral (PI) Controller



PI controller implementation

0 ≤ Ki ≤ 1 but %IW4 is an integer
So, 0.1 is added to the multiplication







Set “Input”:P to 100

Simulation



With Kp = 1, the final output is just half of the input as in theory.
In addition, the output is underdamped as the damping ratio is 0.5.



Increasing Kp will increase the output but it will never reach the goal no 
matter how much of the Kp is applied.
In addition, increasing Kp will increase overshoot.



As the process is second-order, an integral controller will help reduce the 
steady-state error.
Try increasing Ki, and observe the final value of the output. With “Ki”:P” is set to 
5 (real Ki = 0.5 due to 0.1 factor in the ladder diagram), the final output will 
reach the goal. The output is still underdamped due to 0.5 damping ratio.



Exercise

• Compare the simulation with theory
• Is there chances of instability while increasing Ki?

• Explain and prove with root-locus method

• Implement and simulate the following system:

𝐺𝐺 𝑠𝑠 =
4

𝑠𝑠2 + 3𝑠𝑠 + 4



Lab 09: Multiple PLC connection



S7 communication services







Revisit the project file of the previous lab (Lab 
8)
• Add a new PLC to the project



Config the IP and 
subnet



Both PLCs are belong to the subnet but there is no connection.



A new connection must be added.





S7 connection between two PLCs are 
established.



Communication via PUT

The access must be permitted.



Create tag in PLC2 to get info from PLC1.



Config the connection parameter of the PUT block by matching the 
targeted partner PLC

Select “Output” as sending tag
Put bit address of the target partner PLC memory



Simulating the PLC2

The tag “P1 output” will not change as it will
be modified by P1.



As P1 is also running, it will force the value of its output to P2.



Exercise

• Remove the PUT block from PLC1
• Use GET block at PLC2 to obtain PLC1’s output instead.



Lab 10: Synchronization of 
multiple PLC



Revisit the PLCs in Lab-9

• PLC2 will reset the output of the plant reported by PLC1 if it is 
exceeding a certain level set in PLC2

• Synchronization
• PLC1 put the value of its output to PLC2
• PLC2 put the value of its resetting command to PLC1



PLC1 tags



Permit access with 
PUT/GET on PLC1



PLC2 tag

Ladder diagram of 
PLC2 issuing 
“reset” logic



Ladder diagram of 
PLC1 reading the 
logic “reset” from 
M2.0 of PLC2



PLC1 and PLC2 
are 
synchronizing 
as PLC1 sends 
its output to 
PLC2, and read 
the “reset” 
logic from 
PLC2.





Exercise

• Add a PLC to do an additional filling as same as PLC1 do
• Make PLC2 issuing a reset signal to the PLC as same as with PLC1
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