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Lecture 01
Models of industrial HW



Overview of Model-Based 
Design

• Define MBD as an efficient approach to 
designing complex control systems and 
software that integrates simulation and 
automatic code generation

• Explain how MBD is used in industries such as 
automotive, aerospace, and electronics to 
develop embedded systems

• Highlight the key components: the model, 
design environment, simulation, automatic 
code generation, and verification/validation



Benefits of Model-Based Design

Illustrate how MBD can reduce the time from design to implementation 
through rapid prototyping and testing

Discuss how MBD leads to higher quality products by enabling early 
detection of design flaws

Highlight the ability of MBD to streamline design iterations and improve 
collaboration between software, mechanical, and electrical teams



Key Concepts in Model-Based Design

Define modeling in the 
context of MBD as the 
process of creating 
executable specifications for 
system behaviors

1
Explain simulation as the 
method for exploring and 
testing the performance of 
models without physical 
prototypes

2
Clarify verification (the 
process of checking that the 
model meets a set of 
requirements) and validation 
(ensuring the model 
accurately represents the 
real-world system)
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Model-Based Design Workflow

Requirements Modeling Simulation

Code GenerationHardware 
ImplementationTesting & Verification



Tools for Model-Based Design MATLAB/Simulink, LabVIEW, 
and others



Case Study: Application of MBD

DETAIL A REAL-WORLD SCENARIO WHERE MBD 
WAS APPLIED SUCCESSFULLY, SUCH AS IN THE 

DEVELOPMENT OF AN AUTOMOTIVE CONTROL 
SYSTEM

EXPLAIN THE CHALLENGES FACED AND HOW MBD 
ADDRESSED THEM

SHARE THE RESULTS AND IMPROVEMENTS SEEN 
FROM USING MBD



Challenges in Model-Based Design

ADDRESS COMMON ISSUES SUCH AS MODEL 
COMPLEXITY, COMPUTATIONAL DEMANDS, AND 

INTEGRATING MBD WITH EXISTING DEVELOPMENT 
PROCESSES

OFFER STRATEGIES FOR OVERCOMING THESE 
CHALLENGES, LIKE MODEL SIMPLIFICATION AND 

ENHANCED COMPUTATIONAL RESOURCES

DISCUSS THE IMPORTANCE OF TRAINING AND SKILL 
DEVELOPMENT TO EFFECTIVELY LEVERAGE MBD



The Future of Model-Based Design

Discuss trends like the integration of artificial intelligence and 
machine learning into MBD

Explore the potential for MBD in emerging fields like autonomous 
vehicles and smart grid technology

Predict how these trends will shape the future of system design and 
development



Understanding Engineering Models

Fundamental Tools in 
Engineering:
Engineering models simplify and 
structure complex real-world 
systems for better understanding 
by engineers

Models are the cornerstone of 
engineers' design, analysis, and 
problem-solving

Crucial Role in Design:

Models aid engineers in 
visualizing and planning systems 
before physical construction.

Models enable engineers to 
experiment for efficient 
solutions.

Crucial Role in Analysis:

Models aid in analysing and 
predicting system behaviour.

Analysis reveals system 
weaknesses for informed 
decisions

Crucial Role in 
Optimization:
Models optimize by adjusting 
parameters for performance

Optimization is iterative, refining 
designs for the best outcome.

Versatility Across Systems 
and Processes:
Versatile models apply to diverse 
engineering domains

Used for analysing and designing 
diverse systems.



Concept of Engineering Model

An engineering model 
simplifies complex 

real-world systems for 
analysis and design

Understanding and 
Conceptualization

Models help engineers 
visualize and 

understand system 
fundamentals."

Design Phase

Models aid engineers 
in planning and 

visualizing system 
designs.

Analysis and 
Prediction

Models predict system 
behavior, aiding 

analysis and design 
decisions.

Optimization 

Models optimize 
systems by adjusting 

parameters for 
efficiency.



Concept of Engineering Model

Verification and 
Validation: 
• Models verify and 

validate designs to ensure 
real-world functionality.

01
Communication:
• Models aid 

communication, making 
complex ideas 
understandable

02
Risk Assessment:
• Models assess project 

risks, enabling issue 
identification and 
mitigation

03
Iterative 
Improvement:
• Models aid iterative 

design, driving 
continuous improvement.
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Ideal vs. Practical Behavior

Idealized 
Simplified Assumptions

Theoretical Precision

Conceptual Clarity

Limited Realism

Common in Theoretical Sciences

Practical Behavior
Incorporate Real Factors:

Complexity

Practical Application

Risk Assessment

Optimization and Decision-Making: 



Implementation of 
Engineering Model

• Engineering models are used to solve real-world problems and make decision
• Problem Identification

 Engineering models are used to solve real-world problems and make decisions
• Data Collection. 

 Start by identifying the problem, such as product design or process optimization.
• Model Selection

 Gather crucial data as the foundation for an accurate model.
• Model Development

 Select the right model type based on the problem: math, prototypes, or 
simulations

• Parameter Estimation
 Create the model using equations, algorithms, or physical representations, 

considering assumptions.
• Model Validation

 Estimate model parameters from data for real-world alignment



Implementation 
of Engineering 
Model

Model Verification Estimate model parameters from data 
for real-world alignment.

Simulation or Analysis Simulate system behavior with the 
model for insights and improvements.

Optimization Optimize the system using the model to 
maximize desired outcomes

Decision-Making Make informed decisions based on the 
model's insights

Documentation Document the model for transparency 
and future reference

Integration Integrate the model into the project for 
ongoing decision-making.



Lecture 02
Industrial 
automation 
models



Mathematics-Based Model

Mathematical 
Abstraction

Math equations represent 
and simplify real-world 
systems for analysis.

Fundamental Laws

Fundamental laws form the 
mathematical basis for 
engineering models.

Differential 
Equations

Differential equations 
describe dynamic 
behaviors in 
engineering systems."

Linear and Nonlinear 
Models

Math models: Linear for 
simplicity, nonlinear for 
complexity."

Optimization

Math optimization finds 
best solutions for efficiency 
and cost.



Mathematics-
Based Model 
(Cont.)

• Numerical methods and simulations analyse complex models, 
revealing insights

Simulation

• Control theory uses math, equations, and transfer functions for 
dynamic system regulation.

Control Systems

• FEA divides complex systems, aiding structural analysis and 
design.

Finite Element Analysis (FEA)

• Probability and stats analyse data, predict reliability, and 
handle uncertainty in engineering models

Statistical Models

• Math modeling covers weather, environment, and finance, 
blending equations and data.

Modelling Complex Systems



Probability-Based Model

• Probability and statistics in engineering 
models account for uncertainty, variability, 
and risk.
• Uncertainty Characterization
• Data Analysis
• Probabilistic Modeling
• Monte Carlo Simulations



Probability-
Based Model

• Probability and statistics in 
engineering models account for 
uncertainty, variability, and risk.
• Uncertainty 

Characterization
• Data Analysis
• Probabilistic Modeling
• Monte Carlo Simulations
• Reliability Analysis
• Sensitivity Analysis
• Risk Assessment
• Design for Reliability
• Statistical Quality Control



Probability and Statistics in 
Engineering
• Importance of probability and statistics in engineering 

decisions

• Key statistical concepts for engineering analysis
• Understanding variability, uncertainty, and risk in engineering 

contexts



Importance of Probability and Statistics in 
Engineering Decisions

•Enable engineers to make informed decisions based on data rather than intuition.
•Provide a means for quantifying the likelihood of various outcomes and assessing risks.Foundational Role in Decision Making

•Allow for the design of systems that are robust under varying conditions.
•Help in predicting performance and reliability of engineering systems.Driving Design Under Uncertainty

•Aid in resource allocation by predicting and mitigating potential issues before they arise.
•Ensure cost-effective use of materials and processes.Optimizing Resources

•Statistical methods are key in monitoring production processes to maintain and improve quality.
•Six Sigma and other quality improvement methodologies rely heavily on statistical analysis.Quality Control and Improvement

•Facilitate the identification, analysis, and mitigation of risks in engineering projects.
•Enable the development of safety protocols and failure analysis.Risk Assessment and Management

•Support the development of new technologies through the analysis of experimental data.
•Essential in fields like biomedical engineering, where statistical analysis underpins innovation.Innovation and Development

•Necessary for meeting industry standards and regulatory requirements, which often demand statistical proof of 
compliance.Regulatory Compliance

•Use historical data to predict when maintenance should be performed, leading to better planning and reduced 
downtime.Predictive Maintenance



Key Statistical Concepts for Engineering Analysis

Risk Analysis
Quantitative methods for assessing risk and its impact on decision-making.
Use in safety engineering and financial risk assessment.

Reliability Engineering
Statistical methods in assessing system durability and maintenance requirements.
Use of Weibull analysis, survival analysis, and fault tree analysis.

Statistical Process Control (SPC)
Methods for monitoring, controlling, and improving processes through statistical analysis.
Use of control charts and process capability analysis.

Design of Experiments (DoE)
Systematic methods to determine the relationship between factors affecting a process and the output of that process.
Use in process optimization and determining cause-and-effect relationships.

Regression Analysis
Techniques for modeling the relationship between dependent and independent variables.
Use in predictive modeling and trend analysis.

Probability Distributions
Different types of distributions (normal, binomial, Poisson, etc.) used to model various data behaviors.
Application of probability distributions in failure rate modeling and life data analysis.

Inferential Statistics
Using sample data to make inferences about a larger population.
Concepts of hypothesis testing, confidence intervals, and p-values.

Descriptive Statistics
Tools to describe and summarize data: mean, median, mode, range, variance, and standard deviation.
Importance of understanding data distributions and shape characteristics: skewness and kurtosis.



Understanding Variability, Uncertainty, and 
Risk in Engineering Contexts

Variability

•Definition: Variability is the 
inherent spread in a dataset 
due to differences in 
manufacturing, 
environmental conditions, 
and user operations.

•Impact on Engineering: 
Affects quality control, 
tolerance design, and 
performance consistency.

•Managing Variability: Use 
statistical measures like 
standard deviation and 
variance, and employ 
techniques such as SPC 
(Statistical Process Control).

Uncertainty

•Definition: Uncertainty refers 
to the lack of complete 
certainty about the model or 
data, often due to 
incomplete knowledge.

•Types of Uncertainty: Can 
arise from measurement 
errors, incomplete sampling, 
and model approximations.

•Addressing Uncertainty: 
Incorporate safety factors, 
conduct sensitivity analyses, 
and use Bayesian methods 
for improving model 
predictions.

Risk

•Definition: Risk is the 
potential of losing something 
of value and is often 
quantified as the probability 
of an undesirable event times 
its consequences.

•Risk in Engineering: Critical in 
decision-making, especially in 
safety-critical systems, 
financial planning, and 
disaster management.

•Risk Management: Identify, 
analyze, and prioritize risks 
followed by coordinated 
application of resources to 
minimize, monitor, and 
control the probability or 
impact of unfortunate events 
using tools like FMEA (Failure 
Modes and Effects Analysis) 
and risk matrices.

Reliability and Safety 
Engineering

•Reliability Engineering: 
Ensures a system performs 
without failure under stated 
conditions for a specified 
period.

•Safety Engineering: Focuses 
on designing systems to be 
safe and to minimize the risk 
of accidents and 
malfunctions.

Quantitative Techniques

•Probabilistic Analysis: Uses 
probability to assess 
variability and uncertainty.

•Monte Carlo Simulations: 
Perform risk assessment and 
decision analysis under 
uncertainty.



Uncertainty 
Characterization

• Different types of uncertainties: aleatory 
and epistemic

• Tools and techniques for measuring 
uncertainty

• Sensitivity analysis
• Uncertainty propagation
• Expert elicitation

• Case studies demonstrating the impact 
of uncertainty characterization in 
engineering



Defining Aleatory and Epistemic Uncertainty

Aleatory Uncertainty

Definition: Also known as 'inherent' or 
'stochastic' uncertainty, it arises from 

the natural variability in systems or 
processes.

Characteristics: Irreducible and 
unpredictable, often modeled using 

probability distributions.

Examples: Variation in material 
properties, environmental conditions, or 

load demands.

Epistemic Uncertainty

Definition: Results from a lack of 
knowledge or information about the 

system or environment. It is also 
referred to as 'systematic' uncertainty.

Characteristics: Reducible with 
additional information, data, or 

research.

Examples: Uncertainty in modeling 
assumptions, incomplete data, or 

uncertain parameters.

Managing Uncertainties in 
Engineering

For Aleatory: Employ robust design 
principles to accommodate natural 

variability and ensure system reliability.

For Epistemic: Improve data collection, 
conduct more experiments, or refine 

models to reduce uncertainty.

Implications for Design and 
Decision Making

Necessity to understand both types of 
uncertainty for effective risk 

management.

Influence on safety factors, design 
margins, and maintenance schedules.



Data Analysis

• The role of data analysis in engineering 
problem-solving

• Descriptive, inferential, and computational 
data analysis methods

• Visualizing data to understand trends and 
patterns

• Utilizing statistical software for data 
analysis in engineering

• Examples of data analysis applications in 
civil, mechanical, and electrical 
engineering



Probabilistic 
Modeling

• Probabilistic models and their necessity in 
engineering

• Steps to build a probabilistic model:
• Defining the problem and objectives
• Selecting the appropriate probability 

distribution
• Estimating parameters and fitting 

models to data

• Validation of models against empirical data

• Probabilistic models in action: Reliability 
engineering and risk assessment



Monte Carlo Simulations

Monte Carlo methods as a probabilistic simulation tool

Process of setting up a Monte Carlo 
simulation:

Defining the model and inputs

Running simulations with random sampling

Analyzing the results to infer probabilities and risks

Applications of Monte Carlo simulations in complex engineering systems

Advantages of Monte Carlo simulations in cost estimation and project planning



Overview of Technologies in 
Intelligence-Based Models



Artificial Intelligence (AI):

• Description: Briefly describe AI as a technology 
that simulates human intelligence processes by 
machines, especially computer systems.

• Role in the Model: Explain how AI is used for 
decision-making processes, learning from data, 
and automating complex tasks within the model.



Machine Learning (ML):

• Description: Define ML as a subset of AI that 
allows systems to automatically learn and 
improve from experience without being 
explicitly programmed.

• Role in the Model: Discuss how ML algorithms 
analyze data, identify patterns, and make 
predictions, enhancing the model's ability to 
adapt and evolve.



Data Analytics:

• Description: Outline data analytics as 
the process of analyzing raw data to find 
trends and answer questions.

• Role in the Model: Illustrate how data 
analytics provides the foundation for 
insights, supporting AI and ML in making 
informed decisions and predictions.



Real-World Applications and 
Success Stories of Intelligence-
Based Models
Healthcare: Predictive Analytics in Patient Care



Real-World Applications and 
Success Stories of Intelligence-
Based Models
Finance: AI in Risk Management and Fraud 
Detection



Real-World Applications 
and Success Stories of 
Intelligence-Based Models

Retail: Personalized Customer 
Experiences



Real-World Applications and 
Success Stories of Intelligence-
Based Models
• Manufacturing: Predictive Maintenance



Real-World Applications 
and Success Stories of 
Intelligence-Based Models

• Environmental Science: Climate Change 
Analysis



System supervision/ Maintenance 

Continuous Monitoring: Automated monitoring for performance, errors, and potential issues.

Regular Updates and Upgrades: Implementing scheduled updates to improve algorithms and incorporate 
technological advancements.

Data Quality Management: Ensuring accuracy and integrity of input data through validation and cleaning processes.

Fault Detection and Resolution: Protocols for quick detection and effective resolution of system faults or anomalies.

Performance Evaluation: Regular assessment against key performance indicators (KPIs) and objectives, with 
adjustments as needed.

User Support and Training: Providing ongoing support and training for system users, including resources like 
helpdesks and manuals.



Conclusion

Streamlined Development 
Process: Model-Based Design 
significantly streamlines the 
development process from 

conceptualization to 
implementation.

Enhanced Collaboration: 
Facilitates better 

collaboration between 
interdisciplinary teams 

through shared models and 
simulations.

Error Reduction: Reduces the 
likelihood of errors by 

allowing early detection and 
resolution during the design 

phase.

Cost-Effective: Minimizes 
development costs by 

reducing the need for physical 
prototypes and iterative 

testing.

Faster Time-to-Market: 
Accelerates the overall 

product development cycle, 
enabling faster time-to-

market.

Scalability and Flexibility: 
Offers scalability and 
flexibility in design, 

accommodating changes and 
updates efficiently.

Improved Quality and 
Reliability: Enhances the 

quality and reliability of the 
final product through 
thorough testing and 

validation of the model.

Supports Innovation: Enables 
innovation by allowing 

designers to easily 
experiment with and evaluate 

new ideas and concepts.



Exercise



Exercise : Design and Simulation of a Smart Thermostat System
Objective: To design a model of a smart thermostat system using Model-Based Design principles and simulate its behavior under different environmental conditions.

Tools Required: Software for modeling and simulation such as MATLAB/Simulink, or any other MBD software.

Exercise Steps:

1.Conceptualization:

•Define the functional requirements for a smart thermostat system (e.g., temperature regulation, user interface, connectivity).

2.Model Creation:

•Step 1: Design a block diagram model of the thermostat system. Include components such as temperature sensors, control logic, user interface, and actuators.
•Step 2: Define the parameters and algorithms for temperature control logic (e.g., PID controller).

3.Simulation Setup:

•Set up various environmental scenarios to test the thermostat, such as varying outside temperatures, different user settings, and simulated faults.

4.Run Simulations:

•Conduct simulations to observe how the thermostat model responds to the different scenarios.
•Document the system's behavior and performance in each case.

5.Analysis and Iteration:

•Analyze the simulation results to identify any issues or areas for improvement in the model.
•Make necessary adjustments to the model and rerun simulations to validate changes.

6.Reporting:

•Prepare a report summarizing the design process, simulation results, analyses, and any iterations made to the model.
•Include insights on how Model-Based Design facilitated the development process.

Expected Outcomes:

A functioning model of a smart thermostat that meets the defined requirements.

An understanding of how the system behaves under various conditions.

Insights into the advantages of using Model-Based Design in developing and testing a complex system.



Lecture 03
Industrial 
programing 
languages































Exercise

• Discuss the logic difference between a sequential program and PLC 
concurrent behaviors.
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Lab 01
Time-based model of digital outputs



Manual Simulation

• User has to directly set 
inputs

• Not convenient
• Not realistic
• Can be missed in case of a 

complex system where 
more than one inputs are 
to be set in parallel

• Two basic options
• Set sequence in the 

simulator
• Programming a ladder 

logic that emulates 
responses

Switch the inputs in the Simulator to observe and 
debug



Simulation Sequence
• Siemens PLC SIM allows users to set the sequence of inputs/outputs in the 

simulator
• The sequence is time-based, the user has to set

• When and what parameter to be set
• Multiple sequences can be defined but you can run just one sequence at any instance
• To start a sequence, there are two options

• Immediately start
• Wait for triggered condition

Sequence defining area

Set this sequence to repeatedly run



Response Designing

• The defined response must be 
relevant to the practical process

• Timing and sequencing must be 
properly study and verify

• Only inputs to the PLC are to be 
sequenced

• Outputs are determined by the PLC 
operations

Example: Mixing tank problem

• Triggered as V1 is on
• P sensor is on after V1 is on for 5s

• B sensor is on after V2 is on for 5s

• E sensor is on after the mixer is on for 5s
• Because VE is on after the mixer is run for 5s

• B sensor is off right after VE is on
• P sensor is off after VE is on for 5s

• E sensor is off after VE is on for 10s

• As all sensors are off, PLC set V1 to on and the 
sequence is triggered again



Setting the sequence – Triggering condition



Adding the following sequences

Click to enable the 
available tags

Select the desired tag

Set time 
manually

Auto filled Manually type the 
desired value



Complete the sequence

Example: Mixing tank problem
• Triggered as V1 is on
• P sensor is on after V1 is on for 5s
• B sensor is on after V2 is on for 5s
• E sensor is on after the mixer is on 

for 5s
• Because VE is on after the mixer is 

run for 5s

• B sensor is off right after VE is on
• P sensor is off after VE is on for 5s
• E sensor is off after VE is on for 10s

As all sensors are off, PLC set V1 to on 
and the sequence is triggered againClick to run this sequence



Initiating the sequence
Open the SIM table to check whether the triggering 
condition is met?
- In this case, the sequence will start if and only if 

V1 is switched from ‘FALSE’ to ‘TRUE’

V1 is already ‘TRUE’ before 
starting the sequence, the 
sequence will not be triggered

So, we have to manually 
run the first round to 
bring V1 off and then on 
again which will trig the 
sequence



Exercise

• Design and simulate a mixer system with 2 mixers
• The first mixer run 5 seconds
• The second mixer run 10 seconds
• The second mixer run after the first mixer finished



Lab 02
Model of digital outputs via ladder diagram



Response emulator via Ladder logic
• Using the simulation sequence to simulate a practical response can be quite 

limited and does not reflect the real process
• Example: E sensor is on after B is on for 5s

• It is based on the assumption that the mixer is run right after ‘B’ is on and it required 5s 
to open VE which will turn ‘E’ on.

• So, these hidden processes is not shown in the sequence 
• In a complicate case, it can cause over simplified response simulator, which can be 

serious as the main purpose of simulation is to verify the designing solution.

• So, instead of sequence simulation, the ladder logic can be used to emulate 
response if there is enough computing resource left in the PLC

• It also benefits in the term of process checking and troubleshooting as both the control 
and response sides are collaboratively designed and verified each other



Preparation
• The first step to do is replacing the exist input tags to be output tags

• PLC is used to control output not the input
• In practice, inputs are to be changed according to real situations, not by PLC

• In emulation, these inputs are to be manipulated by PLC. So, they must be changed to 
use the PLC’s output

The process is simple.
- In the current example, there are three inputs: P, B, 

and E.
- So, the output of another digital module is 

employed instead



Separate the control and response logics
• For the benefit of maintenance 

and debug
• The TIA Portal allows dividing 

the main ladder into networks

• The existed ladder is named 
‘Control’

• The new ladder is named 
‘Response’

• It is like labelling different parts 
of a program



T-ON: If ‘IN’ is on, Q will be on in 5 seconds

T-Off: If ‘IN’ is off, Q will be off in 5 seconds

T-Pulse: If ‘IN’ is on, Q is immediately on for 10 seconds

Important Timers



In filling:
- ‘P’ will be on if V1 is on for 5s
- ‘P’ is still on while V2 is on
In mixing:
- ‘P’ is on while the mixer is on
In draining:
- V1, V2 and Mixer is off while draining
- It takes 5s after the mixer stop for the liquid to be 
drop below ‘P’

In filling:
- ‘B’ will be on if V2 is on for 5s
In mixing:
- ‘B’ is on while the mixer is on
In draining:
- V2 and Mixer is off while draining
- As ‘B’ indicate the maximum level, ‘B’ is immediately off if ‘E’ 
is on
‘E’ is not on while filling and mixing
‘E’ is on just after ‘VE’ is on
‘E’ is on for just 10s as the whole tank is drained
- 5s from ‘B’ to ‘P’ and another 5s from ‘P’ to empty



Exercise
• Adapt the example into a problem of mixing 3 types of liquid

• 4 sensors
• Three level sensors: P, B, and L (P at low level, B at medium level, L at maximum level)
• A draining sensor: E

• 10 seconds filling from
• Empty to P
• P to B
• B to L

• Mixer is working for 10s

• Provide automatic simulation in:
• Sequencing
• Ladder emulation



Lab 03
Model of analog outputs



Problem configuration

• An automatic bottle filling machine
• Input the desired level, the machine will 

automatically fill up to its value.
• There is a sensor sensing the level of liquid 

which is increasing as the filling is going on.
• The valve stop as the desired level is 

reached
• There is the ‘reset’ switch to initiate a new 

filling



Setting up the project

• Follow the example from two 
previous labs

• Create new project named “Lab03”
• Add PLC
• Config the network

• Config analog ports
• Analog I/O module is in the first slot 

as shown in the figure on the right
• Inputs are the addresses labeled as 

“%IW_ ”
• Outputs are the address labeled as 

“%QW _” 
• Use %IW0 and %QW0



Design the parallel logic
• “Level” is measuring the liquid level in a bottle
• “Valve” is the target level to be filled, treated as an analog input
• In practical situation:

• Level is input and must be read from analog input port

• In simulation:
• Level is simulated via the ladder program
• Use output port to simulate

• Operation
• The PLC sent the read Valve value as the analog output to the automatic filling 

machine
• The machine will stop as the liquid level reach the value sent by the PLC
• A “Reset” digital input is pressed to reset the Level to 0



PLC tags



Filling machine simulation via 
“RampFunction” block

- One of the simplest block to 
emulate the response of this filling 
machine is called “RampFunction”.

- It will continuously increase or 
decrease its output to the level of 
its input as shown in the below 
timing diagram.

If the Reset is “true”, the output is set 
to “SubstituteOutput” which is default 
at “0”.



Simulation
- Set the digital input “Reset” to TRUE
- Set the analog input “Valve” to 80



Simulation
- Switch the “Reset” to FALSE
- The analog output “Level” will gradually increasing until it reach 80



Exercise

• Try to set the input “Valve” to 200 and observe the result
• Try to set the input “Valve” to -200 and observe the result
• Modify the example to be the system of 2 valves for filling 2 bottles 

simultaneously 
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